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Abstract—Multi-tier data centers have become a norm for
hosting modern Internet applications because they provide a
flexible, modular, scalable and high performance environment.
However, these benefits come at a price of the economic dent
incurred in powering and cooling these large hosting centers.
Thus, energy efficiency has become a critical consideration
in designing Internet data centers. In this paper, we propose
a multifaceted approach, Hybrid, consisting of dynamic pro-
visioning, frequency scaling and dynamic power management
(DPM) schemes to reduce the energy consumption of multi-
tier data centers, while meeting the Service Level Agreements
(SLAs). We formulate a mathematical model of the energy and
performance/SLA optimization problem followed by a queueing
theory based approach to develop two heuristics for solving the
optimization problem.

The first heuristic dynamically provisions the optimal number
of servers required in each tier. The second heuristic proactively
decides the CPU speed and the duration of sleep states of a server
to achieve further energy savings. We evaluate our heuristics
using a simulator that was validated with real measurements
on a prototype three-tier data center consisting of 25 servers
with two multi-tier application benchmarks. Our experimental
results indicate that the proposed scheme, Hybrid, can reduce
the energy consumption by 50% relative to static provisioning
without CPU frequency scaling and DPM. We demonstrate that
Hybrid satisfies the SLAs for dynamically varying workloads.
In addition, the proposed multifaceted approach is more energy
efficient than the other methods such as dynamic provisioning
with exploiting deep sleep states.

I. INTRODUCTION

Multi-tier data centers are being increasingly used by In-

ternet service providers for hosting modern applications with

dynamic Web contents. A typical three-tier architecture with

front-end Web servers, middle-level application servers and

back-end database servers provides a modular, flexible and

scalable environment for Web hosting [22]. However, the

surging energy consumption of these data centers has become a

serious concern from the economic and environmental stand-

points. Server farms in U.S. are expected to consume 100

billion kWh at a cost of $ 7.4 billion per year by 2011 [24].

Service providers such as Google, Microsoft, Amazon, Aka-

mai and Yahoo! spend millions of dollars annually to power

on and cool their data centers. Therefore, instead of focusing

on only high and scalable performance, energy efficiency has
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become a first order goal to minimize energy consumption and

reduce the operating budget of data centers.

Most of the techniques for managing energy consumption in

data centers fall into three broad categories. The first method-

ology involves dynamically turning on/off servers to save

energy [2], [5]. The second approach uses Dynamic Voltage

Frequency Scaling (DVFS), where a system dynamically ad-

justs the frequency/voltage to lower power usage [5]. The third

technique uses Dynamic Power Management (DPM) [13],

which utilizes sleep states of various components of a server

and decides when and for how long each component should

be put to sleep to save power. Many proposed mechanisms

combine some of the above techniques to enhance energy effi-

ciency in data centers [2], [3], [15]. However, a systematic co-

ordination of all the three techniques to boost energy efficiency

without sacrificing performance is not trivial. Since dynamic

provisioning is employed at the global/system level while

the DVFS and DPM are employed at the local/component

level and, worse, they are agnostic to each other [16]. We

are not aware of any prior work that has combined dynamic

provisioning of the number of servers, DVFS and DPM to

balance the performance and energy in data centers.

Dynamic provisioning of resources i.e., allocation and deal-

location of servers to applications through analysis of arriving

workload patterns adapts well to the dynamic Internet traffic,

compared to static provisioning [2], [22]. The authors in

[3] propose a coordinated dynamic provisioning scheme with

DVFS for a single-tier data center, where a central controller

decides the CPU speeds of the servers at different time frames

and then the servers run at the same speed. The globally

determined speed or sleep period might be reasonable, but it

may not utilize local workload patterns such as frequent short

idle periods as reported in [13]. On the other hand, we may

conservatively use a local energy management strategy such as

immediately waking up a system from a sleep mode (DPM)

as a request arrives [13]. However, it may not fully exploit

the potential to enhance energy efficiency without the global

knowledge of a system. Therefore, we need to investigate

how to coordinate dynamic provisioning with local energy

management schemes, which is of interest in this paper.

In this work, we propose a three-prong approach, called

Hybrid, for optimizing the energy consumption of multi-tier

data centers, while satisfying the user specified SLAs. We

develop a comprehensive mathematical model considering the
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performance (SLA) constraints and energy consumption. The

model consists of two parts; the global energy consumption of

a data center and the energy consumption of individual servers

in each tier. Since the problem is NP-complete, we propose

two heuristics for solving the global and local optimizations

based on queueing theory. The first heuristic, for global

optimization, dynamically provisions the required number of

servers across each tier. The number of servers is obtained by

modeling the multi-tier data center as a queueing network and

by using the Mean Value Analysis (MVA) [18] for estimating

the performance of each tier. The second heuristic proactively

decides the CPU speed (DVFS) and the duration of sleep

states of a server (DPM) using the results from MVA for local

energy optimization. The proposed scheme is evaluated with

a multi-tier data center simulator, which in turn is validated

with real measurements in terms of energy consumption and

response time using a prototype three-tier data center of 25

servers. We used two benchmarks, RUBiS [4] and TPC-W [20]

for both validating our simulator and evaluating the proposed

heuristics.

The experimental results indicate that our proposed three-

pronged Hybrid solution could save energy up to 50%,

compared with the base case of static provisioning of a

multi-tier data center without utilizing DVFS and DPM. We

demonstrate the energy efficiency of the proposed approach

compared to three other dynamic provisioning techniques:

dynamic provisioning without local energy management, dy-

namic provisioning with DVFS, and dynamic provisioning

with the DPM scheme in [13]. For the RUBiS workload,

our approach provides an additional energy saving by 46%

compared to dynamic provisioning only and by 42% com-

pared to the recently proposed PowerNap technique [13]. This

significant amount of energy savings stems from the fact that

the proposed scheme creates longer total sleep durations per

server and provisions less number of servers to handle any

sudden increase in the workload. All the dynamic schemes

exhibit similar energy behavior for the TPC-W workload since

this workload generates many small requests, thereby making

it difficult to utilize the local DVFS and DPM techniques

effectively. We also show that the proposed scheme, Hybrid,

incurs less number of sleep transitions than the PowerNap [13]

scheme.

The rest of the paper is organized as follows: Section II dis-

cusses the related work. Relevant backgrounds are described

in Section III. Section IV and V presents the formulation

of the problem and the methodology used for solving it.

Our experimental results and discussions are presented in

Section VI, followed by concluding remarks and future work

in Section VII.

II. RELATED WORK

Resource capacity planning and dynamic provisioning for

QoS control have been explored in the past. Chase et al. [2]

presented an approach using economic theory for resource

management in hosting centers with emphasis on energy and

performance. They, however, considered only a single web

tier with small number of web servers for their experiments

and did not leverage the benefits of using DVFS and sleep

states for saving energy. An analytical model of a multi-

tier data center was proposed in [23]. Dynamic provisioning

of a multi-tier data center has been explored in [22]. Both

of the above works have focused on modeling and dynamic

provisioning with respect to only performance (response time

and throughput) of multi-tier data centers without considering

their energy/power. One of the contributions of this paper is

to consider dynamic provisioning for optimizing both per-

formance and power/energy consumption in multi-tier data

centers.

Power management in server systems adopts mostly three

techniques, namely, shutting down selected servers, modu-

lating CPU operating frequency/voltage and dynamic power

management, which puts a system to sleep states to save

power. Initial studies [2], [15] have used the methodology of

shutting down the servers that are either not in use, or have

low load to conserve power. Subsequent studies [5], [19] have

looked at optimizing power efficiency by monitoring system

load and dynamically modulating the CPU frequency/voltage

through DVFS. The authors in [5] have also used a combina-

tion of DVFS and turning on/off servers approaches for power

management. Also, finding the required number of servers to

minimize energy consumption in a single Web tier has been

done by Rajamani et al. [17]. They use a load distribution

scheme to schedule the requests on a subset of servers and

turn others off. However, our work is different from [17] in

two ways. First, we propose a dynamic provisioning scheme

to determine the required number of servers in all the three

tiers together. Second, we make use of DVFS and DPM for

obtaining better energy savings.

Power/energy consumption in server farms has been looked

at with different perspectives. Gandhi et al. [8] used a queuing

model for allocating a given power budget across the servers

so as to maximize performance. Chen et al. [3] made the

first formalism for the problem of reducing server energy

consumption in hosting centers running multiple applications,

while meeting user specified performance bounds. They op-

timize energy efficiency by considering both static server

provisioning and DVFS. This study differs from theirs in three

aspects. First, we consider dynamic server provisioning in a

multi-tier data center environment unlike their evaluation for

single tier of servers. Second, we optimize energy savings by

considering all three techniques: dynamic provisioning, DVFS,

and DPM. The work done in [3] does not consider the benefits

of sleep states for servers in achieving further energy savings.

Third, they decided CPU frequencies for servers by estimating

the performance of a server farm against all the available

CPU frequencies. We propose a more efficient technique to

find an energy optimal frequency at which a server selected

by dynamic provisioning should run to minimize energy

usage. Meisner et al. [13] proposed PowerNap to transition

a system back and forth between a high performance state

and a low power sleep state in response to instantaneous

load to conserve power. The proposed heuristics in this work

avoid a server’s idle period by proactively putting the server

to sleep much before the start of an idle period, thereby,

replacing the periods of low server utilization with power
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Fig. 1: A closed queueing network
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Fig. 2: Estimating the relative power consumption against the

peak power consumption with the CPU utilization (results

from the RUBiS benchmark).

saving sleep states. The authors in [9] proposed multi-mode

energy management schemes for clusters running multi-tier

applications. The authors made use of both DVFS and multiple

sleep modes available in today’s server systems to provide

heuristics for power savings. Although our work has the

same inspiration, it differs from [9] in the following two

ways. First, dynamic provisioning of servers is not considered

in their work. Second, we explicitly address the impact of

power management techniques on user perceived SLAs and

perform a detailed tradeoffs analysis between them using both

simulations and a mathematical model.

III. BACKGROUND

In this section, we describe system assumptions and our

problem formulation along with definitions for subsequent

sections.

We define an active server as one which is either in the

turned-on or sleep state and an inactive server to be one in

the turned-off state. We attempt to address the following two

questions. First, given a total of N homogeneous servers in a

multi-tier data center, how do we allocate n≤N active servers

to process requests from users? Second, how do we schedule

each active server’s CPU speed s and decide on the parameters

for DPM that minimize energy consumption while satisfying

the SLAs?

To model the performance aspects in our problem, we

view a multi-tier data center as a closed queuing network

(Figure 1) [23]. A user sends a new request to the front-end

tier after waiting for a certain amount of time following the

response for the previous request. Requests served in a tier i

is either forwarded to tier i+ 1 with a probability of 1− pi
or responded back to tier i− 1 with a probability of pi. We

define the visit ratio to capture the phenomenon that a request

received at a tier i can generate multiple requests to the next

tier i+ 1, which commonly occurs between the Application

server (AS) tier and the Database server (DB) tier. The servers

in the same tier are assumed to have negligible intra-tier

traffic [6]. The dynamic characteristics of the Internet traffic

is captured by varying the number of users at the beginning

of each time frame. Although a request consumes multiple

resources in a server, the overall power consumption of a

server can be estimated by the analysis of CPU utilization [7],

[8]. In this work, the CPU utilization refers to the utilization of

a server unless otherwise specified [7]. However, we consider

all other resources in a server, especially for the sleep states.

We model the power consumption of a system as a function

of its CPU utilization and speed, which follows the observation

reported in [7], [8].

P(s,ρ) = ρ [a(s− smin)
α+b] ,α≥ 1 , (1)

where ρ is the utilization of a system, a is a coefficient which

depends on the system, smin is the lowest CPU speed, α is a

factor that generalizes the CPU technology and b is the power

consumption when the CPU is operated at smin. Then, the peak

power consumption is P(s,1.0) = 1.0× [a(s− smin)
α+b]. As

reported in [7], [25], we assume that the power consumption

of a system at a given CPU speed is linearly proportional to

the CPU utilization of the system. As shown in Figure 2, we

also verified this by comparing the actual power consumption

on our prototype data center to the CPU-utilization based

estimation of the relative power consumption with respect to

the peak power consumption.

The energy consumption of a system is the integral of the

consumed power over the measured time, that is,

E =

∫
P(s,ρ)dt. (2)

We establish a relationship among the energy consumed for

processing requests (Edynamic), idle period (Eidle), and sleep

period (Esleep) in the following corollary.

Corollary 1: For a given CPU speed s, CPU utilization ρ,
time interval of length T , the ratio of idle power consumption

to the peak power consumption 0 < k < 1, and the ratio of

the sleep power consumption to the peak power consumption

0< k′ < 1, the energy consumption E of a server is given by

E = P(s,1.0)
[

(T − t)(ρ(1− k))+ k)+ tk′
]

, (3)

where t is the total amount of time when the server is in the

sleep state during the interval [t0, t0+T ].

Reasoning for the above corollary is given as follows: the

energy consumption of an active server for a given time frame

is the sum of the energy consumed when the system is in the

dynamic, idle, and sleep states i.e.,

E = Edynamic+Eidle+Esleep.

However, the right side of the previous equation is equal to
∫ t0+T

t0

{

(ρ(1− k))P(s,1.0)+ kP(s,1.0)+ k′P(s,1.0)
}

dt.

Since we assume that the CPU speed remains constant for

a certain time frame, energy consumption is the product of

elapsed time and consumed power according to Equation 3.
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The energy consumption for a server is a function of the

CPU speed and utilization. Thus, for a given CPU utilization,

we can determine the energy-optimal CPU speed s0 that

minimizes the server energy consumption.
Corollary 2: Given the average number of instructions m

required to process a request and the predicted number of

requests r, the energy consumption E of a server is minimal

at a certain speed s0.
Proof: Let ρ be the utilization during T and P(s,ρ)

be the power consumption given in Equation 1. The energy

consumption E, thus, becomes

E =

∫ t0+T

t0

P(s,ρ)dt = ρP(s,1.0)T. (4)

The total number of cycles required to process instructions

for the requests during an interval T for a CPU speed s and

CPU utilization ρ is T × s× ρ. Since the time interval T is

sufficiently large, we can assume that one instruction will be

completed in each cycle. Then, the simple formula that relates

the number of instructions during T to the average number of

instructions required for a request is Tsρ=mr. Therefore, the

energy consumption E of a server is given by

E = P(s,1.0)mr/s. (5)

To find a CPU speed s0 that minimizes E, we differentiate E

with respect to CPU speed s, that is,

dE

d s
=

mr(sP′(s,1.0)−P(s,1.0))

s2
. (6)

Given P(s,1.0) = a(s− smin)
α + b, if α = 1, E is a strictly

decreasing function since dE
d s

< 0 for all s. Thus, the maximum

CPU speed smax minimizes the total energy consumption of a

server, which yields s0 = smax. However, if α= 3, there exists

a smin ≤ sc ≤ smax such that dE
d s

(sc) = 0. Since CPU speeds

are discrete, the CPU speed s0 closest to sc minimizes energy

consumption. When the idle and sleep state are considered,

the proof remains similar. Hence, for processing requests, the

energy consumption of a server is minimal at s0.
Since energy consumption is the product of processing time

and consumed power, we should consider both of these factors

for potential energy savings. Decreasing the CPU speed lowers

the power consumption, but extends the processing time of a

job. Increasing the CPU speed shortens the processing time,

but increases the power consumption during that interval,

which again may not save significant energy. However, when

we cannot meet the performance goal with the energy optimal

CPU speed, we have to run the CPU at the maximum possible

speed to achieve the desired performance. In short, the CPU

speed of a server should be greater than or equal to s0 when

we consider the trade-off between performance and energy.

IV. PROBLEM FORMULATION

The problem of optimizing energy consumption with per-

formance constraints can be formulated as follows: Using

Corollary 1, for a given average CPU speed si of servers in

a given time frame T , the cost C (energy consumption per

server) can be defined as

C =
[

c1 c2 · · · cn
]

, (7)

where ci = P(si,1.0)[(T − t)(ρi(1− k)+ k)+ tk′] and ρi is the
utilization of a server in a tier 1≤ i≤ n. k and k′ are hardware-

dependent constants, which can be determined through real

measurements. Variables in the cost function are s, ρi and t.

Different values of the function P(si,1.0) can be evaluated by

measuring the power consumption of server at different speeds.

The objective function representing the energy consumption of

a multi-tier data center is given by

CV =
[

c1 c2 · · · cn
]











v1
v2
...

vn











, (8)

where vi in V =
[

v1 v2 v3 · · · vn
]T

is the number of

active servers in tier i in a given time frame. Thus, our goal is

to determine a vector V and the variables in the cost functions

which will minimize the overall cost function (Equation 8)

under the following constraints.

Suppose

• T : response time of a multi-tier data center

• TSLA : response time constraint specified in SLA

• N : total number of servers

• τi : throughput of a server in tier 1≤ i≤ n

• ri : expected number of requests for tier i per time frame

then,

T ≤ TSLA

vi ≥ 1
n

∑
i

vi ≤ N

TSLA ·~τ ·V ≥
[

r1 r2 · · · rn
]T

,

(9)

where~τ is a n×n matrix given by














τ1 0 · · · 0

0 τ2 0 · · · 0

0 0 τ3 0 · · · 0
...

. . . 0

0 · · · τn















.

These constraints mean the following: the total response time

should be bounded by the SLAs, each tier has at least one

active server, the sum of the active servers should be less

than or equal to the total number of servers, and each tier

should process the required number of requests within the

target response time.

By Little’s Law [12], the average number of requests in a

system is equal to the product of throughput and the average

response time of each request. Thus, the throughput of our

system,~τ ·V multiplied by the target response time TSLA must

be larger than or equal to the expected number of requests to

satisfy the performance bounds and save energy. For example,

if we let ri be 12 and τi 3, then we get vi = 4. This means that

4 servers are sufficient to handle all 12 requests. However, if

TSLA is 2 seconds, we can reduce vi to half (i.e. vi = 2) and

still manage to meet TSLA. This is why we need to multiply

TSLA in the last constraint.
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TABLE I: Summary of model parameters

Parameters Description Methods to obtain
TSLA The maximal response time

specified in SLA
Given

N Total # of Servers Given
ρ CPU utilization Actual Measurement
M The # of requests Actual Measurement
τ Throughput of a server Actual Measurement
T Response time Actual Measurement
1/µ Service Time of a request at

current CPU speed
Estimated by ρ/τ

m The Avg. # of instructions
per requests)

Estimated in
Section V-A

t0 Service time at energy opti-
mal CPU speed

Calibrated in
Section V-A

~r The # of requests for each
tier in next time frame

Predicted by weighted
moving average from
actual measurements

Power(s,ρ) Power consumption Estimated by linear
regression from actual
measurements

τmax Throughput of a server to
meet the response time

Estimated by MVA

T̄ expected response time of in-
coming requests

Estimated by MVA

~v # of servers for each tier in
the next time frame

heuristic

s CPU speed for processing in-
coming request

heuristic

t The amount of time to sleep
before processing incoming
request

heuristic

V. METHODOLOGY

In this section, we describe the methodologies used to

solve the problem formulated in Section IV. Specifically,

we describe how to estimate the model parameters and the

heuristics used to solve the problem. The notations for the

parameters used in our model along with the methods to obtain

them are summarized in Table I.

A. Estimation of Model Parameters

The parameters of interest include the peak power con-

sumption, server utilization, number of requests in the next

time frame and server throughput. Since the plate peak power

consumption is far from the real peak power consumption [7],

we use the real peak power consumption in our model. The

CPU utilization of a server is obtained from monitoring tools

supported by operating systems, for example, sar package

in Linux. The number of requests received by a server in the

next time frame is measured by observing the number of open

sockets. A server opens a socket when a request arrives and

keeps it open until the response reaches to the client as per the

HTTP1.1 protocol specification. We determine the number of

open sockets by analyzing operating system logs. We predict

the number of requests in a tier for a given time frame as a

weighted moving average of the number of requests during

the previous time frames. It is to be noted that more accurate

prediction techniques such as auto-regressive time series could

also have been used. However, simple moving average serves

as a good prediction technique in our experiments.

A server in a tier may not always operate at the energy

optimal speed s0. Therefore, we calibrate a server’s service

time to the service time at the speed s0. To calibrate the service

time of a request when a CPU is operated at the speed s0, we

first calculate the mean number of instructions requested for a

request in a server at the current CPU speed sc and then relate

it to the target speed s0. The mean number of instructions

required to process a request, mi is obtained as follows. For

a time period of duration t, CPU utilization ρ, average CPU

speed s̄, number of requests ri, and number of servers vi in a

tier i during the previous time frame, mi is given by

mi =
s̄ρt
ri
|vi|

=
s̄ρt|vi|

ri
, (10)

where ρ, s̄, and r can be obtained from operating system

supported tools. Now, let us derive a simple formula to relate

mi to the energy optimal speed s0. When a CPU is operated at

the speed s0, the average service time t0 of a request is given

by

t0 =
mi

s0
, (11)

where mi is the average number of CPU instructions for a

request at tier i. Also, the total number of instructions for a

request remains the same even though we vary CPU speeds.

This calibration procedure aims at estimating the service time

of a request in a server before changing the frequency in the

dynamic provisioning algorithm.

In our model, we assume that each tier is modeled as

a queue in a closed queuing network. We use Mean Value

Analysis (MVA) algorithm [18] to determine the maximal

throughput and marginal response time of each tier. MVA takes

as input the number of clients, visit ratio of each tier, number

of tiers, and user think time. The parameters obtained from

MVA algorithm determine the elements of ~τ in Equation 9.

The elements of vector V are all integers, leading to the

above problem formulation as an integer linear programming

problem, which is known to be NP-complete. Hence, we

propose heuristics to solve the above problem, though they

may not always guarantee an optimal solution. In the next

section, we describe our heuristics.

B. Heuristics

We propose two heuristics to solve our proposed optimiza-

tion problem. The first heuristic involves a global optimization

for finding the desired number of active servers in each tier for

reducing energy consumption by using just sufficient number

of servers. The second heuristic relates to a local optimization

at individual server levels. It determines the energy optimal

CPU speeds and sleep states.

The first heuristic algorithm (Algorithm 1) works as follows:

We get the estimated throughput, response time, and queue

length for each tier from the MVA algorithm. As described in

section IV, the number of servers vi for tier i is obtained by

vi =
Li+ ri

TSLA× τ̄i
(12)

The performance of this algorithm might be sensitive to the

time interval between provisioning. However, the algorithm

itself does not need to specify the time interval.
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TABLE II: Parameters used in Algorithm 1

Parameters Descriptions
TSLA Target response time
M # of requests from clients
t0i Service time of tier i at CPU speed s0
~r # of incoming requests for each tier
z Think time interval
t Duration of time frame
~V # of servers for each tier
Li # of queued requests for tier i
T̄ Total average response time
T̄i Estimated average response time of tier i
τ̄i Estimated throughput of tier i
N Total # of servers

Algorithm 1 Heuristic for selecting the optimal number of

servers for each tier of a multi-tier data center

Input: TSLA, M, ~r, s0, s̄, ρ, ~Vcur , t, z, k, n

1: mi =
s̄ρit|vi |

ri
2: t0i =

mi
s0

3: (T̄ , T̄i, τ̄i) =MVA(M, t0i ,~r,z,TSLA,n)
4: Li = τi×Ti
5: vi =

ri+Li
τ̄iTSLA

6: if vi > vicur then

7: vi = vicur +0.9|vi− vicur |
8: else if vi < vicur then

9: vi = vicur −0.2|vi− vicur |
10: end if

11: if ∑n
i=1 vi ≥ N then

12: vi =
Nvi

∑n
i=1 vi

13: end if

The intuition behind this heuristic is that we can save energy

with agreeable performance degradation by minimizing the

number of servers. Since the throughput τi is the maximum

possible throughput that can satisfy the target response time,

the number of servers vi, given by our heuristic is the minimum

number of servers that can meet the given SLA and achieve

substantial power/energy savings. Note that our method does

not search the entire solution space to find the appropriate

number of servers. When the number of active servers required

is greater than N, we allocate all of these N servers to process

the given workload. We use the simple Round-Robin scheme

to distribute workload across the servers. Further, to prevent

frequent fluctuation of the number of servers in each tier, we

gradually change the number of servers as described in lines

6 - 9 of Algorithm 1.

Next, Algorithm 2 describes the heuristic for dynamically

determining the duration of sleep states and CPU speed to

account for the dynamic nature of the Internet traffic. This

problem is considered NP-hard [10]. Our approach may put

a CPU into the sleep state while delaying the incoming and

already queued requests, provided that we can process the

delayed requests at an energy optimal CPU speed s0 without

violating the given time limit. However, the scheme presented

in [13] makes a system sleep whenever it detects an idle state

and then wakes up on the arrival of the next job. Our approach

is motivated by the fact that a server sleep power consumption

is around 10% of peak power consumption [13].

In order to find the duration for the sleep period, we first

estimate the response time of an incoming request. Since an

incoming request will be processed after all other queued

requests are completed in a First-Come-First-Serve discipline

and the service rate of a CPU is assumed to be the CPU speed,

the response time of an incoming request is given by

(Li+1)m

s
,

where Li is the number of requests in the queue, m is the

average number of instructions required to process a request,

and s is the CPU speed. To minimize energy consumption, we

need to run the server at a speed s= s0 as given in Corollary 2.

Thus, the current incoming request will be completed at (Li+
1)m/s0.
If we can finish processing the current incoming request

within the marginal response time of a request in tier i, (Li+
1)m/s0 < T̄i, we can put the system into the sleep state while

keeping the response time within TSLA. When a request arrives,

we inspect the expected response time of the incoming request

as above. If T̄i− (Li+ 1)m/s0 > 0, we can transit the server

into the sleep state for T̄i − (Li + 1)m/s0 duration of time.

After that duration, the server wakes up and runs at the energy

optimal speed. If the incoming request cannot be completed

within T̄i, we run the CPU at least at the energy optimal speed

without transitioning into the sleep state. Since the overhead

of transition from/to the sleep state in terms of performance is

negligible [13], the above approach does not hurt the response

time, specified in SLA.

As shown in Corollary 2, we do not need to run the system

under the energy optimal CPU speed s0 even when we can

process the incoming request with a slower CPU speed than

s0. However, when the given workload cannot be processed

within T̄i at the speed s0, we need to run the CPU at a speed

s, where s0 < s ≤ smax. The speed s is the closest available

CPU speed to (Li + 1)m/T̄i. When s > smax, we need more

servers to process the current workload and the number of

servers will be increased in the next time frame as explained

in Algorithm 1.

Our heuristic for selecting the minimal number of servers

picks the servers for each tier without searching the solution

space exhaustively. A single tier data center environment does

not take into consideration the chain reaction that may occur

in a multi-tier environment when the number of servers in a

tier is changed. Unlike a single tier case, in a multi-tier data

center, one has to consider the behavior of other tiers while

selecting servers for a tier. Also, both DVFS and DPM should

be considered together based on the estimated results from an

entire tier granularity and not from an individual server in a

tier. This leads to the optimal allocation of servers across all

the tiers as well as avoids the global performance degradation

caused by local optimization technique such as DVFS and

DPM done at the granularity of a server.

C. Intuitions behind possible energy savings

Next, we analyze the trade-off between performance and

possible energy savings with our proposed heuristics. For the

predicted number of requests for next time frame r, the number

of servers in tier i vi is equal to (ri+L)/τ̄iTSLA in our heuristics

(in Algorithm 1). That is, we use enough number of servers

to meet the target response time as explained in section V-B.
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Algorithm 2 CPU speed scheduling of a server in tier i

Input: TSLA, T̄i, τ̄i, N, r, s0, ρ, t, s̄
1: m= s̄ρt

r
2: Li = T̄i× τ̄i
3: if

(Li+1)m
T̄i

< s0 then

4: sleep for (T̄i− (Li+1)m/s0)
5: run the CPU at s0
6: else

7: if (Li+1)m/T̄i < smax then

8: run the CPU at the speed closest to ⌈(Li+1)m/T̄i⌉
9: else

10: run the CPU at smax
11: end if

12: end if

However, our heuristics for the CPU speed considers the

energy optimal CPU speed rather than the maximal CPU speed

as given in Corollary 2. The performance degradation of our

proposed scheme is graceful since we can adjust the speed

dynamically to avoid violating the SLA.

Let us now discuss the possible energy savings that can be

obtained with our schemes. According to Equations 8 and 9

in section IV, the total energy consumption of a data center

increases linearly with the increase in number of active servers.

From experimental results, it was confirmed that the number

of servers provisioned by our scheme is almost similar to

that of dynamic provisioning with maximal CPU speed. Thus,

when the traffic fluctuates, we can achieve energy savings by

reducing the number of active servers under light traffic.

Towards this end, the individual servers also utilize DPM

which further reduces their energy consumption. The system

utilization of a server with our scheme is at least

ρ= τ×Service Time=
L

T
×

m

s0
, (13)

where L is the average queue length, T is the target response

time, m is the average number of instructions per request, and

s0 is the energy optimal CPU speed. Since, we put the system

including CPU into the sleep state when

Tis0 > (Li+1)m.

(line 3 of Algorithm 2), we can yield the lowest utilization of

servers with our scheme as follows:

ρ= τ×Service Time (Utilization Law)

=
(Li+1)

Ti
×

m

s0
. (Little’s Law)

Thus, we replace the period of idle state as well as low

utilization with the sleep state which consumes 10 % of peak

power consumption as reported in [13].

Finally, since the power consumption is a cubic function of

the CPU speed, if we operate a server with the energy optimal

speed rather than maximal or minimal speed, we achieve more

energy savings. As an example, suggested in [8], suppose the

relation between the power consumption and the CPU speed

is given by

P(s) =

(

100

39

)3

(s−1.2)3+150 , 1.2≤ s≤ 3.0 .

The energy consumption of a server is minimized for s = 2.8

GHz according to Corollary 2. We assume that there is no job

dependency with other machines. Using the above power-to-

frequency equation, the power consumption for s = 3.0GHz

is 250W and for s= 2.8GHz is 219W. Therefore, the ratio of

energy consumption to process unit cycle for s = 2.8GHz to

s= 3.0GHz is

219W/2.8GHz : 250W/3.0GHz= 0.938 : 1.0

Thus, by only using the energy optimal speed, we could reduce

the power consumption of each machine by 6.2 %, compared

to running them at maximal CPU speed.

To summarize, our proposed schemes can achieve substan-

tial energy/power savings by reducing the number of servers

required, using energy optimal speed instead of running

servers at either the maximal CPU speed or any randomly

picked CPU speed, and utilizing dynamic power management

with the sleep state. We obtain potential energy savings, while

satisfying SLAs.

VI. EXPERIMENTAL RESULTS

A. Validation of the Simulator

We validate the correctness of our simulator from real

measurements on a prototype three-tier data center consisting

of 25 servers using two multi-tier application benchmarks.

For validation, we compared the response time and energy

consumption obtained from simulation with those collected

from real measurements. Baseline technique for comparison

with our schemes uses static provisioning without either DVFS

or DPM. For simulation, we used a modified version of a

multi-tier data center simulator [11], written in CSIM [14].

The parameters used in the simulation like service time, peak

power consumption, duration of time frame, etc are all derived

from real measurements (Table I).

We performed experiments in two different hosting environ-

ments. The first one, ENV1 is an unvirtualized multi-tier data

center and the second one, ENV2 is a virtualized multi-tier

data center. The first hosting environment includes machines

with dual 64-bit AMD Opteron 250 CPUs (2.39GHz) and 4GB

main memory. The operating system is Red Hat Enterprise

Linux 4.0 (Linux kernel v2.6.9). Apache 2.0.54 is used for

web servers, JOnAS 4.6.6 for application servers, and MySQL

5.0.15-0-Max for database servers. Servers are connected by

1Gbps Ethernet. Communication between web and application

servers is made through the mod jk v.1.2.5 connector and

that between application and database servers is via the C-

JDBC v.2.0.1 connector. For the workload, we used the RUBiS

benchmark [4] which models an online auction site.

The second experimental environment (ENV2) consists of

four Xen-based virtual machines [1] that run on four different

physical machines. Each physical host machine is equipped

with dual Intel Xeon CPUs (3.4GHz) and 2GB RAM, run-

ning on Redhat 9 Enterprise edition with kernel version of

2.6.18-164.el5. We installed Xen v3.1.4 on all of these four

machines and created one Virtual Machine (VM) on each

physical machine. Each VM runs on Fedora core 4 having

kernel version 2.6.18.8. VMs are given 512MB RAM and
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Fig. 3: Validation results of the model and simulator

connected by 1Gbps Ethernet. The four VMs are distributed

across the three tiers in the following manner - first tier

consists of an Apache web server running on one VM, two

JBoss 3.2.8SP1 application servers running on separate VMs

comprise the second tier, and MySQL 4.1 database server

hosted on another VM forms the third tier. We used TPC-

W benchmark that models a three-tier online book store and

the J2EE implementation of TPC-W [21] was used. For client

emulator, we used a TPC-W [20] based workload generator.

Yokogawa’s WT210 power meter was used to record the power

consumption of machines.

Figure 3 shows the validation results with respect to energy

consumption and response time. Here, (O) represents the

observed results from real measurements and (E) represents

the estimated results from our simulator. (The energy numbers

represent the total energy consumption across the cluster).

From these figures, we observe that the graphs for the re-

sponse time and energy consumption corresponding to real

measurements and simulation results closely match with each

other for different number of clients in both RUBiS and TPC-

W benchmarks. We also notice that the height of the bar graph

for DB tier in Figure 3b is negligible due to the small response

time of DB tier. Moreover, since the version of MySQL that

we used does not provide response time information, we were

unable to validate response time of the DB tier in Figure 3d

for TPC-W. (We, however, expect similar trend for the DB tier

as was observed for the WS and AS tiers.) However, in ENV1,

we were able to log DB tier response times by modifying the

RUBiS benchmark.

Since response time and energy consumption are well cap-

tured by our simulator, according to Corollary 1, it implies that

CPU utilization and, hence, throughput can also be correctly

estimated using our simulator. We use our multi-tier data cen-

ter simulation platform for detailed analysis of the proposed

schemes in the following section. Due to the unavailability of

sufficient number of servers in our experimental cluster, we

obtained results from the simulator.

B. Evaluation Results

In this section, we present the simulation results to compare

our heuristics, Hybrid, with four other schemes, STATIC,

DYN, DVFS and PowerNap. The baseline is the static pro-

visioning at maximal CPU speed without invoking DVFS

or DPM. For the static provisioning, we found the optimal

number of servers for each tier using the MVA algorithm to

guarantee an average response time of 2 seconds (which is

the SLA response time limit in our experiments). The dynamic

provisioning (DYN) decides the number of servers for each tier

based on heuristic 1 and then the CPUs run at the maximal

speed. DVFS is the scheme that conflates heuristic 1 and

heuristic 2 without using DPM. PowerNap employs heuristic 1

with the DPM mechanism proposed in [13].

a) Experimental Details: We varied the CPU speed

from 1.2 GHz to 3.0 GHz and estimated power consumption

of a node using the equation in [8]. In our simulations,

servers are modeled as M/M/1 queues for simplicity. From

real measurements with the RUBiS and TPC-W benchmarks,

we obtained various simulation parameters like service time,

ratio of dynamic to static requests and number of database

queries generated per dynamic request. We varied the number

of requests for the two benchmarks dynamically over a 30

minutes duration and the request variation with time is shown

in Figure 4a. In our experiments, the dynamic provisioning

scheme decides the number of servers for each tier during the

next time at the granularity of one minute interval.

b) Simulation Results: Figure 4b shows the variation of

response time of Hybrid and PowerNap for the RUBiS and

TPC-W workload for each time frame. The number of servers

provisioned by our heuristics across all the tiers in a multi-tier

data center is shown in Figure 4c. We observe that except the

spike in these graphs during the 10-12 minute time interval

(corresponds to flash crowd), Hybrid keep the response time

below 2000ms and thus adheres to the response time bounds

of SLA. Although the response time of our scheme hikes up

to 5000 ms during the flash crowd, within the next couple of

intervals, our scheme could allocate enough number of servers

across the tiers to keep the response time within the SLA limit

of 2000ms. The PowerNap scheme showed similar trend. The

results demonstrated that the proposed scheme, Hybrid can

adapt to both static and burst Internet traffic. Although not

shown in these graphs, other schemes also exhibited similar

behavior for both RUBiS and TPC-W.

Figure 5 provides comparative analyses of the average

response time, energy consumption, the number of of powered-

on servers, and the total sleep time per server. Figure 5a

represents the average response time of all requests for the

RUBiS and TPC-W workloads, respectively. As expected,

STATIC has the minimum latency due to overprovisioning

and Hybrid incurs the maximum latency since Hybrid can

make a system sleep longer than PowerNap. For the TPC-

W workload, one dynamic request generates around 55 small

and frequent database queries, leading to little idle periods

to exploit DPM. Thus, the sleep state cannot be utilized as

much as for the RUBiS workload, which makes the average
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Fig. 5: Evaluation of the proposed method

response times of all dynamic provisioning schemes similar

to each other. We note that the response time of DVFS is 7%

higher than PowerNap for the RUBiS workload because the

servers in DVFS process the requests at a lower speed than

PowerNap. For the TPC-W workload, however, the response

time of DVFS is lower than other dynamic schemes.

Figure 5b shows that Hybrid can reduce the total energy

consumption by about 50% and 44% for RUBiS and TPC-

W, respectively, when compared to STATIC. Hybrid could

save 42% more energy compared to PowerNap for the RU-

BiS workload. The energy saving is attributed to the longer

sleep period and energy optimal CPU speed in Hybrid than

PowerNap, which is described in Section V. We observe that

the total sleep period of a host with Hybrid is 24 times longer

than that of PowerNap for the RUBiS workload (Figure 5d).

The average duration of one sleep period with Hybrid is 18.66

ms, compared to 0.48 ms with PowerNap. Hybrid resulted in

32836 transitions to the sleep state per server on average, while

PowerNap had 52512 transitions on average. With PowerNap,

the system wakes up whenever a request arrives, creating

longer low utilized periods in the system than with Hybrid.

Also, we took the advantage of DVFS by running the active

servers at the energy optimal speed instead of at the maximal

speed. Compared to static provisioning, the energy saved by

PowerNap, DVFS, and DYN for the RUBiS workload is about

15%, 14%, and 10%, respectively.

Since the behavior of a system varies according to the

workload, the results from the TPC-W workload are different

from those of RUBiS. In Figure 5b, all dynamic provisioning

schemes reduce energy consumption for the TPC-W workload

by more than 49% relative to STATIC. Since the number of

servers to process requests during the peak traffic period is

significantly larger, compared to the case with low traffic,

dynamic provisioning schemes can save significant energy.

However, because of many small database queries in TPC-W

workload, the idle period between requests is short. Thus, the

opportunity for utilizing the sleep state is less for the TPC-W

workload, although the overall energy consumption decreases

compared to the STATIC provisioning.

The number of active servers for both the workloads is

shown in Figure 5c. In static provisioning, a total of 36 and

168 servers were used during all time frames for the RUBiS

and TPC-W workloads, respectively. For the RUBiS workload,

the number of active servers in STATIC is close to the average

number of active servers in all dynamic schemes. However, for

the TPC-W workload, the number of servers with STATIC is

close to the maximal number of active servers in dynamic

schemes due to high variability in number of requests gener-

ated between tiers. In all the dynamic provisioning schemes,

the number of active servers for all the tiers decreased under

light traffic, which corresponds to the minimum number of

active servers (a total of 17 servers across all the tiers in

Figure 5c). However, we used a total of 36 servers in STATIC.

168 servers were provisioned with STATIC for the TPC-

W workload, but only 25 servers were allocated with all

dynamic provisioning approaches. This is because STATIC

reserves adequate number of servers for handling peak traffic

even under low load conditions. At the eleventh time frame

(Figure 4a), the dynamic provisioning schemes increase the

number of servers to maintain the response time of requests

due to the sudden increase of the workload in the previous time

frame. During heavy traffic periods, for the RUBiS workload,

PowerNap and Hybrid provisioned 16% and 12% more servers

than DYN, respectively. However, for the TPC-W workload,

the number of active servers in PowerNap is 13% more than

DYN, while that of Hybrid is 5% less than DYN. This implies
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that the server utilization in Hybrid is higher than that of

PowerNap under heavy traffic. To summarize, our method cre-

ates more opportunities for energy savings, while maintaining

the SLA since it incorporates dynamic provisioning with the

energy management techniques for individual servers.

Some insights drawn from the experimental results are sum-

marized below. First, our proposed scheme, Hybrid, may have

less potential to save energy where the DPM technique cannot

be leveraged much; for example, in the TPC-W workload,

which generates many small requests between tiers. Second,

experimenting with different response time thresholds, we ob-

serve that the behavior of all the considered dynamic schemes

does not significantly change. With a stricter SLA constraint,

the overall energy consumption increases by allocating more

number of servers to keep up with the performance bound in

dynamic schemes. Similarly, with a relaxed SLA constraint,

the energy usage reduces since dynamic schemes can achieve

the desired performance with less number of servers. We

experimented with 1000 and 3000 ms SLA thresholds, but

the results are not shown due to space constraints.

VII. CONCLUSIONS

In this paper, we proposed a novel multi-level approach for

increasing the energy efficiency and maintaining the perfor-

mance bounds of a multi-tier data center. We formulated our

performance and energy analysis as an optimization problem

and introduced two heuristics to solve it. The first heuristic

dynamically provisions the sufficient number of servers across

each tier to conserve energy, while satisfying the SLAs. The

second heuristic schedules the above selected servers to run at

energy optimal CPU speeds and utilizes the DPM mechanism

involving sleep states to boost further energy savings. We

have constructed a prototype three-tier data center to validate

our simulator and obtain parameters for solving our proposed

model. Experimental results with the RUBiS and TPC-W

benchmarks demonstrated that our proposed Hybrid technique

can provide up to 50% more energy savings compared to

the base scheme of static provisioning, where the servers run

at the maximal speed without DPM. Extensive simulation

results demonstrated that the combined Hybrid approach to

energy saving is more effective than other compared dynamic

techniques such as DYN, DVFS and PowerNap for workloads

that provide the opportunity to exploit DVFS and DPM

techniques at individual servers. For the RUBiS workload, our

integrated approach provided additional 42% energy savings

and turned on less number of servers under heavy traffic

compared to the most recently proposed PowerNap technique.

The proposed approach delivers higher energy efficiency by

facilitating longer sleep durations and/or reducing the number

of active servers.

As future work, we plan to extend our scheme to environ-

ments with dynamic workloads consisting of multiple types

of applications, heterogeneous servers and shared resources

among servers.
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