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Abstract—As we integrate data-parallel GPUs with general-
purpose CPUs on a single chip, the enormous cache traffic
generated by GPUs will not only exhaust the limited cache
capacity, but also severely interfere with CPU requests. Such
heterogeneous multicores pose significant challenges to the design
of shared last-level cache (LLC). This problem can be mitigated
by replacing SRAM LLC with emerging non-volatile memories
like Spin-Transfer Torque RAM (STT-RAM), which provides
larger cache capacity and near-zero leakage power. However,
without careful design, the slow write operations of STT-RAM
may offset the capacity benefit, and the system may still suffer
from contention in the shared LLC and on-chip interconnects.

While there are cache optimization techniques to alleviate such
problems, we reveal that the true potential of STT-RAM LLC
may still be limited because now that the cache hit rate has been
improved by the increased capacity, the on-chip network can be-
come a performance bottleneck. CPU and GPU packets contend
with each other for the shared network bandwidth. Moreover,
the mixed-criticality read/write packets to STT-RAM add another
layer of complexity to the network resource allocation. Therefore,
being aware of the disparate latency tolerance of CPU/GPU
applications and the asymmetric read/write latency of STT-RAM,
we propose OSCAR to Orchestrate STT-RAM Caches traffic
for heterogeneous ARchitectures. Specifically, an integration of
asynchronous batch scheduling and priority based allocation for
on-chip interconnect is proposed to maximize the potential of
STT-RAM based LLC. Simulation results on a 28-GPU and
14-CPU system demonstrate an average of 17.4% performance
improvement for CPUs, 10.8% performance improvement for
GPUs, and 28.9% LLC energy saving compared to SRAM based
LLC design.

I. Introduction

Heterogeneous multi-cores that integrate CPUs and GPUs

on the same chip have been recently used on all kinds

of computing platforms such as handheld devices, personal

computers, servers, and gaming consoles. Integrated designs

(e.g., Intel Haswell [16] and NVIDIA Denver Project [8])

allow faster communication between CPU and GPU memory.

Moreover, new integrated architectures such as HSA [24]

(employed in some APU models such as the AMD A10-

7850K APU [1]) provide a unified virtual address space

and a programming model for CPU and GPU applications.

These tightly integrated architectures lead to more efficient

communication between CPU and GPU applications and better

programmability. With such tight integration, it is beneficial to

explore the possibility of sharing resources between CPUs and

GPUs, such as the main memory, the last-level cache (LLC),

and even the on-chip interconnect. However, this integration

causes severe contention in the shared resources, and thus

opens up new challenges in exploring the design trade-offs

as well as new research problems in controlling and reducing

the contention in shared resources.

An important shared resource in heterogeneous CPU-GPU

architectures is the LLC. For example, the recent Intel i7

6700K processor [18] contains 4 CPU cores and an Intel HD

graphics 530 (gen9), and there is a shared LLC that is not only

used for sharing compute data, but also for graphics, which

is usually not accessed by the CPU. The LLC reduces overall

memory latency, which is critical for CPU performance, and

acts as a filter to reduce the pressure on DRAM bandwidth,

which is crucial for GPU performance. However, due to the

high amount of thread-level parallelism (TLP) available in

GPU applications, the high number of requests originating

from GPUs exhaust the LLC capacity. Furthermore, CPU and

GPU requests interfere with each other, leading to degrada-

tion in both CPU and GPU performance. While alternative

solutions to this contention problem such as employing cache

partitioning [27] or concurrency management [23] alleviate

this problem or mitigate its effects, a more viable option to

attack this problem is to eliminate it at its source, which is the

limited LLC capacity. A naive approach to the problem posed

by the limited LLC capacity is to employ a larger LLC, but

it comes at the cost of extra access latency, higher dynamic,

and leakage power as well as area overhead, and thus leads to

design trade-offs.

Instead, we explore the replacement of SRAM based LLC

by emerging non-volatile memories (NVM) for heterogeneous

multicores. Unlike traditional SRAM that uses electric charges

to store information, emerging NVMs (e.g., PCM, STT-RAM,

ReRAM, etc.) use resistive storage in a cell, with consider-

ably higher cell density and near-zero leakage in the data

array. Therefore, NVMs can potentially replace SRAM to

increase the LLC capacity without incurring significant area

or power overhead. Among alternative NVM technologies,

STT-RAM is particularly promising to replace SRAM in

LLCs because of its high cell density, non-volatility feature,

and low leakage power consumption. Moreover, STT-RAM

shows higher endurance [6], [19] compared to other NVM,

which makes it more attractive to design on-chip caches that

must endure frequent accesses. Because of these benefits,

industry has recently explored the opportunity of using STT-

RAM as an SRAM LLC replacement for CPUs, such as

Toshiba’s recent efforts [36], [35]. Therefore, in this work,

we take an initiative step to design STT-RAM based LLC for978-1-5090-3508-3/16/$31.00 c© 2016 IEEE
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Fig. 1: Baseline heterogeneous multicore system with 14 CPU cores, 28 GPU cores, and 8 LLC slices. They are connected by a 6×6 mesh
network, with each router connected to either a CPU, two GPUs, or an LLC+MC slice.

heterogeneous multicores.

However, a direct replacement of SRAM LLC by STT-

RAM will not work effectively for heterogeneous multicores.

First, although STT-RAM can provide larger shared LLC

capacity, it cannot completely prevent the large number of

GPU requests from occupying the majority of LLC, which

would hurt latency-sensitive CPU applications that heavily

depend on LLC hits. Second, STT-RAM comes with latency

and energy overhead associated with its write operations. This

problem gets worse for heterogeneous multicores because,

apart from CPU write requests, GPUs typically generate more

frequent write requests. Due to these two main reasons,

packets from both CPU and GPU applications, as well as read

and write requests interleave in NoC. This interleaving causes

the pattern of requests arriving at the LLC to be not favorable

for STT-RAM, limiting the true potential of STT-RAM LLC

in heterogeneous multicores.

Therefore, instead of simply replacing SRAM by STT-

RAM as the shared LLC, we first analyze the interference of

CPU and GPU traffic, and then propose necessary solutions

at the NoC level to tackle the obstacles of employing STT-

RAM LLC for heterogeneous multicores. Based on our key

observation that expensive STT-RAM write requests are not as

much performance critical in GPUs as in CPUs, and because

of the latency tolerance disparity between CPU and GPU

applications, we propose a customized NoC allocator design,

called OSCAR, which consists of an asynchronous batch

scheduling policy to dynamically batch CPU and GPU packets

based on their traffic pattern, and a priority-based allocator

to order different packets with mixed criticality inside each

batch. OSCAR reshapes the pattern of requests to the STT-

RAM LLC for better cache utilization. Overall, our goal is

to enhance the performance of both CPUs and GPUs while

reducing the energy consumption of LLC, thus designing an

energy-efficient heterogeneous multicore system.

Our main contributions in this paper are as follows:

• We show that the capacity of LLC is a performance

limiting factor in heterogeneous multicores. Therefore, we take

an initiative step to replace SRAM based LLC with STT-RAM

for higher capacity and lower leakage power.

• We reveal a two-dimensional interference problem with

heterogeneous multicores with STT-RAM LLC: latency-

sensitive CPUs vs. bandwidth-sensitive GPUs, and asymmetric

latency of read/write packets due to STT-RAM. Thus, instead

of simple adoption of emerging NVM technology, we focus

on re-shaping the network traffic to favor STT-RAM caches,

so that the full potential of STT-RAM LLC can be maximized

to support heterogeneous multicores.

• Instead of strict isolation between CPU and GPU traffic

by employing two separate sub-networks and statically parti-

tioning the network bandwidth, we propose an asynchronous

batch scheduling policy to provide fair bandwidth allocation

in one shared network, which dynamically groups CPU and

GPU packets in batches according to the traffic pattern.

• We further modify the switch allocator to provide fine-

grained priority based allocation inside each batch of packets,

taking into account the fact that GPU applications are more

latency-tolerant than CPU applications, and that the high over-

head of STT-RAM write requests has significant performance

impact on CPU applications as opposed to little impact in GPU

applications.

• We perform an extensive evaluation of our proposal and

show that our techniques provide 17.4% and 10.8% average

performance improvement for CPU and GPU applications,

respectively, and 28.9% LLC energy saving, compared to the

conventional SRAM based LLC design.

II. Analysis of Heterogeneous Multicores

In this section, we show an example heterogeneous mul-

ticore system with shared NoC/LLC and examine the key

challenges we are concerned with. Specifically, we analyze the

impact of GPU applications on CPU performance and explore

potential solutions to address the problems.

A. A Case for Heterogeneous Multicore Systems

As shown in Figure 1a, the heterogeneous multicore archi-

tecture places throughput-optimized GPU cores and latency-

optimized CPU cores on the same chip, and connects these

cores to the shared LLC and memory controllers (MCs) via

an interconnect. In order to provide a scalable design for

such heterogeneous architectures, we use a tiled architecture

and connect all the components via Network-on-Chip (NoC).

Figure 1b depicts a 6x6 mesh network interconnected through



routers and links. All the core, cache, and MCs are then

attached to the routers for communication.

In our baseline layout, as shown in Figure 1c, a total of 14

CPUs and 28 GPUs are connected to 8 LLC slices through a

6x6 mesh NoC. It consists of 7 processing tiles, where each

tile has 4 GPU and 2 CPU cores. We choose a GPU to CPU

core ratio of 2:1 because a single GPU core (i.e., streaming

multiprocessor, SM) in Fermi GF110 GPU (45nm technology)

occupies roughly half the area of one Intel Nehalem CPU

core (45nm technology). The LLC, shared by both CPUs and

GPUs, is distributed and each slice is directly attached to

an MC. The detailed architecture configuration (Table I) and

workload specification (Tables III and IV) will be discussed

in Section V. Note that we categorized the CPU benchmarks

based on their L2 cache MPKI (miss-per-kilo-instructions) and

selected 14 applications with a wide range of MPKI values.

The baseline layout is generic enough to represent tile-based

heterogeneous multicores, and is not uniquely binded to our

following analysis and methodology. An alternative layout is

also explored in Section V-G.

B. Effects of GPU Traffic on CPU Performance

CPU applications tend to be latency-sensitive, whereas GPU

applications are more bandwidth-sensitive and can often tol-

erate long cache/memory access latency because of sufficient

thread-level parallelism [17]. These disparities may lead to

unpredictable performance when CPU and GPU applications

share the on-chip resources such as NoC and LLC. Due

to the massive number of threads, it is quite common for

GPU applications to access caches much frequently than CPU

applications and make the network congested. Therefore, CPU

performance is likely to be severely influenced.

To illustrate this, we run a mix of CPU and GPU applica-

tions on the baseline heterogeneous multicore system shown

in Figure 1. Specifically, for each experiment, we use the

same set of multi-programmed CPU workloads representing

different MPKI values with each CPU core running a dif-

ferent program, while all GPU cores cooperatively run a

single workload. Details of the workloads are described in

Table IV in Section V-B. Then, we run these CPU applications

standalone in the same system by disabling the GPU cores.

In this way, we can compare the performance of CPUs with

and without GPU interference. For example, Figure 2 shows

the performance of individual CPU applications before and

after enabling the GPU application Blackscholes (BLK).

Different CPU applications are affected by GPU execution at

different degrees. Applications such as povray, namd, and

dealII suffer much less because of high local L2 cache hit

rate. On the contrary, those with high MPKIs (e.g. omnetpp,

mcf, soplex) generate more LLC accesses and thus will be

affected more severely by the GPU traffic. For example, the

performance degradation of mcf reaches 75.5%. On average,

the IPC drop is 53.7% across all CPU workloads.

Fig. 2: The IPC of each CPU program when executing without
a GPU application, and when executing with Blackscholes (a
GPU application). These CPU programs represent applications with
different L2 MPKI values.

C. Breakdown of Memory Requests

To understand why CPU performance is severely affected

by GPU applications, we collect the number of LLC/MC

requests generated by CPUs and GPUs. We run the same

multi-programmed CPU workloads (See Table IV) with a

different GPU workload in all the experiments. Because the

number of GPU requests can be several orders of magnitudes

larger than that of CPU requests, we show the request count in

logarithmic scale in Figure 3. Note that we run the simulation

until the slowest CPU core issues 5 million instructions or

the GPU application finishes execution, whichever comes

first. Therefore, even though we are running the same CPU

mix, the actually simulated instructions for CPUs will vary

with different GPU workloads. We observe that the LLC/MC

requests are dominated by GPU applications. On average, there

are over 25× more GPU requests than that of CPU requests.

In the worst case, when the CPU applications are running with

GPU application BFS, almost 97% of the requests come from

GPUs. Therefore, the majority of the on-chip shared resources

will be occupied by GPU requests. Furthermore, these GPU

requests might occupy the LLC without actually obtaining

substantial benefit.
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Fig. 3: The total number of LLC/MC requests generated by both
CPUs and GPUs, when running the same multi-programmed CPU
workloads (see Table IV) with different GPU workloads (X axis).
Note that the Y axis is in logarithmic scale.

Note that these requests are generated by local cache misses

in CPUs/GPUs. These misses are delivered to the destination

nodes for LLC access, and sent off-chip for memory access

in case of LLC misses. Correspondingly, the reply messages

will be sent back on-chip for cache updates. Therefore, the

LLC/MC requests shown in Figure 3 will not only stress the

LLC, but also the request and reply NoC that connect all the

on-chip components.



D. Ideal Case Analysis: A Larger LLC at No Cost

With a large amount of GPU traffic exhausting the LLC

and leaving little share for CPU applications, a straightforward

solution is to increase the LLC capacity in order to accom-

modate more traffic. Here we explore an ideal LLC design

which “magically” increases the SRAM based LLC capacity

without any constraint (i.e., the increased capacity does not

incur additional area/power overhead and can be operated at

the same speed as the baseline).

Since we run multi-programmed CPU applications, we use

weighted speedup (WS) [40] to measure the overall CPU per-

formance. WS is obtained by ∑
n
i=1(IPCi,multiprogram/IPCi,alone),

where n is the number of CPU applications in the workload.

We observe in Figure 4 that CPU performance improves in

most of the cases except when running CPUs with GPU

applications such as BlK, Ray, and SPMV. On average, we

can achieve 8.0%, 14.8%, and 18.6% CPU performance im-

provement with 16MB, 32MB, and 64MB LLC, respectively.

Moreover, the highest performance gains at these three ideal

LLC designs are 32.0%, 65.6%, and 76.2%, respectively.
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Fig. 4: The impact to CPU performance (weighted-speedup) when
increasing the LLC capacity ideally. Each experiment runs the same
multi-programmed CPU workloads (see Table IV) with a different
GPU workload (X axis).

Similarly, we observe GPU performance under different

LLC capacities. On average, the total GPU IPC improvement

is 22.2%, 24.5%, and 25.7% for a 16MB, 32MB, and 64MB

LLC, respectively, as shown in Figure 5.
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Fig. 5: The impact to GPU performance when increasing the LLC
capacity ideally. Each experiment runs the same multi-programmed
CPU workloads (see Table IV) with a different GPU workload (X
axis).

Therefore, if we can ideally scale the LLC capacity, the

performance benefits we can achieve for both CPUs and GPUs

are quite promising. However, (1) LLC already occupies a

dominant portion of chip area and thus it is impractical to dou-

ble or even further increase the LLC capacity with traditional

SRAM technology. (2) The increase of cache capacity comes

with power overhead. This is especially true for leakage power,

which is proportional to the cache area. (3) The access latency

to each LLC slice will increase as its capacity increases.

Alternatively, if we increase the number of LLC slices in

our tiled architecture, the size of the NoC will also increase,

which in turn hurts the system performance due to the longer

communication distance.

III. Replacing SRAM LLC by STT-RAM

As we can see from the previous section, designing a larger

LLC can potentially mitigate the CPU/GPU contention prob-

lem. However, this approach is not practical for conventional

SRAM based LLC design. Therefore, as a replacement of

SRAM, we explore emerging non-volatile memories like STT-

RAM for LLC design in heterogeneous multicores.

A. Motivation for Leveraging STT-RAM Technology

Unlike the traditional SRAM and DRAM technologies that

use electric charges to store information, STT-RAM uses Mag-

netic Tunnel Junctions (MTJs) for binary storage. STT-RAM

has the following advantages over SRAM or other emerging

non-volatile memories, which make it a good candidate to

replace SRAM as the last-level cache.

• Like other resistive memories, STT-RAM relies on non-

volatile, resistive information storage in a cell, and thus

exhibits near-zero leakage in the data array. Figure 6 shows

the structure of an STT-RAM cell. It uses a 1T1J structure

which comprises of an access transistor and a Magnetic Tunnel

Junction (MTJ) for binary storage. An MTJ contains two

ferromagnetic layers (reference layer and free layer) and one

tunnel barrier layer (MgO). The directions of these two layers

determine the low/high resistance of the MTJ, which indicate

the “0”/“1” state.

MgO

Free Layer

Reference Layer

MTJ

NMOS transistor

Bit line

Source line

Word line

Fig. 6: The 1T1J STT-RAM cell structure. The relative direction
of free layer to the reference layer (parallel/anti-parallel) determines
the low/high resistance of the MTJ, which indicates “0”/“1” binary
storage.

• STT-RAM uses smaller 1T1J cells as opposed to the

typical six-transistor SRAM cells. An SRAM cell size is about

120 - 200 F2 whereas an STT-RAM cell size is about 6

- 50 F2 [6]. As a result, for the same capacity as SRAM,

the dense STT-RAM cells can cut the cache area budget.

• The endurance of STT-RAM (1015 writes [6], [19]) is

significantly higher than other NVMs (e.g., 109 writes for

PCM). This makes STT-RAM superior than other NVMs to

handle frequent cache accesses in heterogeneous multicores.



However, although STT-RAM read operations achieve com-

parable read latency and energy as SRAM, the write latency

and the write energy of STT-RAM are significantly higher

than an SRAM access, because a strong current is required

to reverse the magnetic direction of the MTJ in order to write

“0” or “1” into an STT-RAM cell.

B. Same Area LLC Replacement

Here, we analyze the performance benefit of replacing

SRAM LLC by STT-RAM for heterogeneous multicore sys-

tems. We assume the density of STT-RAM is 4× of SRAM

(see Table II in Section V). Therefore, for the same area budget

as the 8MB baseline SRAM LLC, we can approximately

design a 32MB STT-RAM based LLC. For comparison, we

also analyze an ideal LLC design with the same capacity

(32MB) as STT-RAM but the same speed as SRAM.

Figure 7 shows the overall CPU performance with the

STT-RAM replacement. Compared to the ideal LLC, there

is a significant performance gap due to the write latency

overhead of STT-RAM. For some cases like BLK and HOT,

the overall performance of CPU applications even drops below

the baseline, meaning the write latency overhead outweighs the

capacity benefit of STT-RAM. Overall, a simple replacement

of the baseline SRAM by STT-RAM increases the overall CPU

performance by about 5.8%. On the other hand, due to the long

write latency of STT-RAM, we observe a 6.5% performance

loss compared to the ideal LLC design.
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Fig. 7: CPU performance (WS) comparison with a baseline 8 MB
SRAM LLC, an ideal LLC with the capacity (32 MB) of STT-RAM
and the speed of SRAM, and a 32 MB STT-RAM based LLC. Each
experiment runs the same multi-programmed CPU workloads (see
Table IV) with a different GPU workload (X axis).

As for GPU performance, we conduct similar analysis and

present the results in Figure 8. Different from our observation

for CPUs, the impact of write latency overhead to GPUs

is rather random. Some applications (e.g., SP) experience

performance drop as compared to the ideal SRAM design.

Some applications (e.g., RAY, BFS) drop below baseline

slightly. Interestingly, there are several benchmarks (e.g.,

MUM, SPMV) that even gained a bit performance improve-

ment compared to the ideal LLC case.

Overall, a simple replacement of the baseline SRAM by

STT-RAM will increase the GPU performance by 11.2%.

When compared to the ideal LLC case, the performance

degradation due to the long write latency is only 1.1% on

average. The observation validates the latency tolerance of

GPUs, as their performance is determined by the abundant

thread-level parallelism which keeps the core busy and hides
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Fig. 8: GPU performance comparison with a baseline 8 MB SRAM
LLC, an ideal LLC with the capacity (32 MB) of STT-RAM and
the speed of SRAM, and a 32 MB STT-RAM based LLC. Each
experiment runs the same multi-programmed CPU workloads (see
Table IV) with a different GPU workload (X axis).

some of the cache/memory access latency. In summary, we

demonstrate that the high overhead of STT-RAM write requests

have a significant performance impact on CPU applications

as opposed to little impact in GPU applications.

C. Challenges with STT-RAM Based LLC

Asymmetric Read/Write Performance: As shown in Fig-

ure 7, the STT-RAM write overhead costs a 6.5% performance

drop on average for CPUs, with the worst-case performance

drop being 13.5%. To better understand the behavior of reads

and writes in the system, we divide the total LLC/MC accesses

(as shown in Figure 3) into reads and writes. The distribution

of these requests are shown in Figure 9. We observe that,

for the CPU mix, 24% of LLC/MC accesses come from write

operations on average. For GPU workloads, the ratio of writes

varies from 0.2% to 93.4%. Therefore, the impact of slow

writes cannot be ignored.
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Although writes are not in the critical path during execution,

the long write duration will block the critical reads from

accessing the shared LLC [42], [33], which in turn hurts the

system performance. This is especially true for the latency-

sensitive CPU applications, because the critical CPU read

requests will not only interfere with CPU write requests, but

also will be severely blocked by the enormous GPU requests.

Requirements for NoC support: As illustrated before, the

true potential of STT-RAM LLC is still limited due to the

write latency overhead associated with STT-RAM, especially

for CPUs. However, addressing the problem of asymmetric

read/write performance is not straightforward for heteroge-

neous multicores, as these asymmetric read/write operations

belong to heterogeneous CPU/GPU applications that generate

heavily unbalanced number of requests. Now that the cache

hit rate can be improved by the increased STT-RAM capacity,



the communication backbone (NoC) that routes all these

requests can potentially become the performance bottleneck.

Specifically, the high amount of GPU traffic may quickly

occupy most of the NoC resources such as buffers, and even

lead to network congestion or saturation.
To analyze the NoC performance under STT-RAM based

LLC, we evaluate the average network latency for the entire

system. As shown in Figure 10, there is clearly a signifi-

cant latency gap between running CPUs W/ and W/O GPU

applications. On average, the NoC latency is increased by

4.0× with the involvement of GPUs. Compared to the 8MB

SRAM baseline, the 32MB STT-RAM based LLC can reduce

the average NoC latency by 17.4%, but still experience a

significant 3.3× NoC performance degradation compared to

the W/O GPU case.
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Fig. 10: Average NoC latency under different LLC configurations,
when running the same multi-programmed CPU workloads (see
Table IV) with different GPU workloads (X axis).

This means, even though the replacement of SRAM LLC

by STT-RAM achieves some performance gains (5.8% for

CPUs, and 11.2% for GPUs), the latency reduction in the NoC

is still negligible. Specifically, NoC will potentially become

the performance bottleneck because LLC/MC accesses will

be delayed in the network for 3.3× longer time compared

to a network without GPU traffic. Note that we started off

with a relative large baseline NoC bandwidth. Our link width

is 32 bytes, which is a reasonable design and offers 2× to

4× network bandwidth of many NoC configurations with

16B [33], [28], [37] and 8B [46] link width. Therefore, to

fully utilize the potential of STT-RAM based LLC for larger

performance speedup, a robust NoC support is required to

reshape the pattern of requests to the STT-RAM LLC, being

aware of the heterogeneous CPU/GPU traffic with asymmetric

STT-RAM read/write requests.

IV. Network-on-Chip Management Policies

In this section, we propose the key design parts of OSCAR

to fully explore the potential of STT-RAM based LLC in

heterogeneous multicores through NoC optimization, which

consists of a strong ordering of network packets through asyn-

chronous batch scheduling, and a weak ordering of packets

inside each batch through priority-based allocation.

A. Strong Ordering with Batch Scheduling

A straightforward way to mitigate the interference of CPU

and GPU packets is network isolation. In this section, we

will first discuss a strong isolation of network packets by em-

ploying separate sub-networks, which statically partitions the

network bandwidth. Then we propose a novel asynchronous

batch scheduling which can dynamically allocate network

bandwidth to CPU and GPU packets using a single shared

network. It groups CPU and GPU packets into batches and

enforces strong ordering between batches to support differen-

tiated bandwidth allocation.

1) Multiple Independent Networks

A simple scheme to handle network interference is to en-

force network isolation between different applications. Similar

to the multi-network designs [34], [11] for CPUs, we can

design separate networks for CPU and GPU traffic. As shown

in Figure 11, when the network interface (NI) receives a local

packet, it decides which network this packet should be steered

to, based on the packet type (CPU or GPU) indicated in

the packet header. For fair comparison, we assume a fixed

total channel width (aka. phit width) for CPU and GPU

network combined, thus the limited channel bandwidth should

be statically partitioned to each network.
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Fig. 11: Schema of network isolation: Separate CPU and GPU
networks are connected to the local nodes through shared network
interfaces (NIs). Packets will be steered into different networks based
on their packet types.

2) Asynchronous Batch Scheduling

The aforementioned multi-net design provides strict iso-

lation between CPU and GPU traffic, but may fail to sat-

isfy various application demand due to static partitioning

of network bandwidth. Instead, we still use a single shared

network, but design a novel technique, called asynchronous

batch scheduling, to allow dynamic bandwidth allocation to

CPU and GPU packets. Specifically, our asynchronous batch

scheduling policy consists of two techniques: (1) At each

input port, always reserve one virtual channel (VC) for CPU

traffic only, while the rest of the VCs are accessible to both

CPU and GPU packets, and (2) batch CPU and GPU packets

for fair scheduling with strong ordering between different

batches. Specifically, the reserved VC mitigates starvation of

CPU packet, because GPU packets are orders of magnitude

more than CPU packets as shown in Figure 3. CPU and GPU

packets are grouped into mini-batches to enable differentiated

bandwidth allocation according to the traffic pattern. The

strong ordering is between different batches, namely one batch

has to finish before the other batch starts. However, inside each

batch, flits are scheduled asynchronously to avoid starvation

(i.e., a flit does not have to wait for the entire batch to be

filled out before it can proceed).



Figure 12 demonstrates our router microarchitecture with

asynchronous batch scheduling. Incoming flits are buffered

in the input port which consists of multiple virtual channels

(VCs), and then go through VC allocation (VA) and switch

allocation (SA) before traversing the switch (ST) and reaching

the output port. A batch is a collection of flits (fixed size F)

that is delivered in entirety. We use four VCs per input port,

with VC 0 reserved for CPU packets. In each batch, a fixed

share is allocated to CPU (NC) and GPU (NG). In this example,

NC = 1, NG = 4, and F = 5, which indicates 20% of network

bandwidth is allocated to CPU traffic.

Virtual  channels

Input port K

Control 

logic/

Allocators

K x K Switch

Output ports
Input port 0

VC0

VC1

VC2

VC3

Batch 0 Batch 1 Batch 2 Batch 3

Fig. 12: The router microarchitecture with asynchronous batch
scheduling. We use a generic router design with 4 virtual channels
(VCs) per input port. VC 0 is reserved for CPU packets only, while
other VCs are shared by CPU and GPU packets. 4 batches are shown
with a batch size of 5 flits. Batch 0 will be delivered in entirety before
processing the next batch.

Initially all VCs are empty and no batch contains any flits.

When a source, say a CPU, pushes a flit into the VC 0,

it marks it as belonging to batch 0. Further incoming GPU

flits will be written into other VCs and fill up batch 0. After

that, following flits will be written into batch 1, until batch

1 is filled up with the specified CPU and GPU share. This

process is repeated until the entire input buffers are full. In

our batch-based scheduling, all flits belonging to the same

batch will be delivered together, and batches are processed

according to their numbers. For example, in Figure 12, batch

0, 1, 2, and 3 will be delivered in order. Compared to time-

division multiplexing or traditional round-robin scheduling,

our batch-based scheduling enables a flexible allocation of

network resources to different sources, without enforcing strict

timing constraint. In the meantime, to avoid starvation, we

allow asynchronous processing of flits inside each batch, so

that a flit does not have to wait for other flits to fill up the

entire batch before it can proceed.

In addition, since the number of CPU packets versus GPU

packets is application-dependent, we keep the batch size

constant but dynamically change the share of CPU and GPU

packets in each batch in an epoch basis. We use a sample

window size of 100µs and use two counters to track the

number of CPU requests and GPU requests at each input port,

respectively. Then the corresponding ratio will be adjusted in

a batch and the new batch composition will be used at the

beginning of the next epoch.

B. Weak Ordering through Network Prioritization

Our asynchronous batch processing strategy groups CPU

and GPU packets into batches. However, inside a batch, there

is still contention of CPU and GPU packets. Moreover, the

batch scheduling process is agnostic about the asymmetric

latency of read/write packets. Therefore, we further explore

network prioritization to provide weak ordering of network

packets inside each batch. Since these packets have different

criticality to the system performance as illustrated before,

an appropriate prioritization scheme is required to allocate

sufficient NoC resources to those critical packets.

Figure 13a depicts a generic NoC router. Specifically, in

the virtual channel allocation (VA) and switch allocation (SA)

stages, the allocators determine which request will be granted,

thus we can prioritize the network packets by integrating the

priorities into the existing allocation policies.

1) Prioritizing CPU over GPU

As shown in Figure 3, the number of GPU packets in the

network can be several orders of magnitude higher than that

of CPU packets. As a result, GPU packets will occupy most of

the NoC resources (e.g., input buffers), and frequently win the

allocation in the router which in turn block the transmission

of CPU packets.

Therefore, a straightforward solution is to prioritize CPU

packets over GPU packets. In this way, the CPU packets

will be delivered faster to the destination nodes. Usually, the

problem with network prioritization [9] is starvation. In our

case, always prioritizing the CPU packets over GPU packets

may result in extra delay of some GPU packets. However, the

good news is: 1) the number of CPU packets is much lower

as shown in Figure 3 and thus the chance of starvation caused

by CPU packets is rare, and 2) GPU applications are usually

not latency-sensitive, as validated by many prior work [32]

and also our results in Figure 8. Thus, the occasional network

stalls have little influence on the GPU performance. The main

reason that GPUs tolerate miss latency (including NoC, cache,

and even memory access latency due to local L1/L2 cache

misses) is that, GPU programs usually exhibit much higher

TLP than CPU programs, thus the GPU performance would

not be significantly influenced by cache misses as long as there

are sufficient threads to be executed.

2) Prioritizing Reads over Writes

One important characteristics of STT-RAM is the asym-

metric read/write latency. While the read latency is similar

to the SRAM counterparts, its write latency is significantly

longer. As shown in Figure 7 and Figure 8, the long STT-RAM

write latency has a serious impact on the system performance,

especially for CPUs. In the scenario where a write operation

is followed by several read operations, the ongoing long

write operation may block the upcoming read operations and

cause performance degradation. Because there are a significant

number of write operations (as shown in Figure 9) and that

reads are typically on the critical path, an STT-RAM friendly
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Fig. 13: Our priority based allocator design in an NoC router. It uses a separable allocator based on iSLIP but with priority-based matrices
during the request-grant process. The order of the priorities are: CPU read (CR) > CPU write (CW ) > GPU read (GR) > GPU write (GW ).

prioritization scheme should favor read packets over write

packets, for both CPU traffic and GPU traffic.

3) Overall Prioritization Scheme

In our heterogeneous multicore system, the mixed-criticality

read/write packets to STT-RAM add another layer of com-

plexity to the NoC resource allocation. As a result, priority-

based network allocation is a two-dimensional process: 1)

CPU against GPU, and 2) read against write. Nevertheless,

because the number of GPU packets are usually several order

of magnitudes larger than that of CPU packets as shown in

Figure 3, and we have demonstrated in Section III-B that the

long STT-RAM write requests have significant performance

impact on CPU applications as opposed to little impact in

GPU applications, the priority assignment problem can be

simplified: always prioritize CPU packets over GPU packets,

then we can prioritize read packets over write packets in each

traffic class. In summary, the priorities of the network packets

are ordered as: CPU read (CR), CPU write (CW ), GPU read

(GR), and GPU write (GW ).

To implement our prioritization policy in the NoC, we

integrate two bits to the packet header flit to indicate the packet

type (00: CPU read, 01: CPU write, 10: GPU read, 11: GPU

write), and then modify the allocation policies in VC allocation

and switch allocation of the router datapath. Specifically, our

design is based on the popular iSLIP allocator [31]. Therefore,

our priority-based allocator is performed as in iSLIP, but with

preference towards higher priority packets instead of using

existing round-robin arbitration schemes.

Figure 13b shows our 4×3 priority based allocator design

which accepts four 3-bit vectors to the input arbiters and

generates four 3-bit vectors from the output arbiters. The bold

lines show the request-grant process. Specifically, as shown in

Figure 13c, the input vectors form a request matrix R. The

type of the requests (CR, CW , GR, GW ) are also indicated in

the matrix. Based on the request type and our prioritization

policy, the input priority vector In is {1,0,1,2}, and the output

priority vector Out is {0,2,3}.

Note that our allocator design is a separable allocator in

which allocation is performed as two sets of arbitration: one

across the inputs and one across the outputs. Therefore, based

on the input priority vector In, the intermediate request matrix

is shown in X . Finally, based on the output priority vector Out,

the grant matrix G gives the final allocation results, which is

consistent with Figure 13b.
The asynchronous batch scheduling ensures a strict ordering

between batches, but not among flits in the same batch.

Therefore, our priority based allocation scheme as shown in

Figure 13 can be integrated with this scheduling algorithm.

Specifically, within each batch, flits will be served based on

the priority of: CPU read (CR) > CPU write (CW ) > GPU read

(GR) > GPU write (GW ). We name our integrated approach

as OSCAR, because it Orchestrates NoC traffic for STT-RAM

Caches in heterogeneous ARchitectures.

V. Evaluation

In this section, we first describe the experimental setup and

the benchmarks for evaluation, then conduct performance and

energy analysis on our proposed techniques.

A. System Setup

To evaluate our proposed schemes, we integrate GPGPU-

sim v3.2.0 [4] with an in-house cycle-level trace-driven x86

CMP simulator. We fast-forward the CPU applications to the

ROI for the CPU traces. Then the simulation warms up with

CPU execution until the slowest CPU core has completed

500K instructions. After that the GPUs start execution together

with CPUs. To measure CPU performance, we run the simu-

lation until the slowest CPU core issues 5 million instructions

or the entire GPU application completes execution, whichever

comes first.1 We simulate the heterogeneous multicore system

as shown in Figure 1.
Table I shows the detailed CPU, GPU, cache, NoC, and

memory configurations. There are a total of 28 GPU cores and

14 CPU cores. A GPU core contains 32-wide SIMD lanes and

is equipped with an instruction cache, private L1 data cache,

constant, and texture caches. Each CPU core is a 3-way issue

x86 core with private write-back L1 instruction/data cache and

1A majority of GPU applications finish execution before the slowest CPU
hitting 5 million instructions, as mentioned in Section II-C



L2 caches. The shared LLC is partitioned into 8 modules. For

the baseline SRAM based LLC, each module is 1MB and

thus the total size of LLC is 8MB. The baseline design also

uses a shared 6x6 2D mesh network to connect all the core

and cache components. The NoC employs a dimension-order

routing algorithm and wormhole flow control. Each network

packet contains five flits and each flit is set to be 32-byte long.

As for the router microarchitecture, we adopt a classic router

design with four-stage pipelines. Each input port of the router

contains four virtual channels (VCs). Each VC has a buffer

depth of 4 flits. As for the main memory, we use a detailed

GDDR5 DRAM timing model. The main memory is also

partitioned into 8 banks, with each DRAM bank connected

to a memory controller.

TABLE I: Baseline heterogeneous architecture configuration

GPU core 28 shader cores, 1400 MHz, SIMT width = 16x2,
Max. 48 warps/core, 32 threads/warp

GPU caches / core 16KB 4-way L1 data cache, 12KB 24-way texture
cache, 8KB 2-way constant cache, 2KB 4-way I-
cache, 128B line size

CPU core 16 x86 cores, 2000 MHz, 128-entry instruction
window, OoO fetch and execution

CPU L1 cache 32KB 4-way, 2cycle lookup, 128B line size

CPU L2 cache 256KB 8-way, 8cycle lookup, 128B line size

Share SRAM LLC 1x8 MB, 128B line, 16-way

NoC 6x6 shared 2D mesh, dimension-order routing, 32B
phit width, 4 VCs per port, 4 buffers per VC, islip
allocator

Main memory 8 shared GDDR5 MCs, 800 MHz, FR-FCFS, 8
DRAM-banks/MC

To compare SRAM with STT-RAM as the LLC, we list

their capacity, latency, and energy numbers [13], [45] under

the same area budget, as shown in Table II.

TABLE II: Comparison of SRAM LLC and STT-RAM LLC

Memory type 1MB SRAM 4MB STT-RAM

Read latency (ns) 1.748 2.730

Write latency (ns) 1.491 11.212

Read energy (nJ) 0.054 0.13

Write energy (nJ) 0.051 0.352

Leakage power (mW) 33.750 2.477

Area (mm2) 0.87 0.791

B. Workloads for Evaluation

We run a wide range of CPU and GPU workloads for perfor-

mance evaluation. As shown in Table III, we evaluate 12 GPU

applications from CUDA SDK [4], Rodinia [7], Parboil [41],

and LonestarGPU [5]. For CPUs, we run multi-programmed

workloads with a mix of applications from different bench-

mark suites including scientific, commercial, and desktop

applications drawn from the SPEC R© CPU 2000/2006 INT

and FP suites and commercial server workloads. Furthermore,

we conduct workload analysis and select 14 CPU benchmarks

that represent a wide range of MPKI values (miss-per-kilo-

instruction). The selected CPU benchmarks are listed in Table

IV. In our scenario, we are interested in multi-programmed

workloads in which CPU and GPU inject traffic at the same

time, as compared to letting CPU execute the sequential part

and GPU execute the parallel part without overlapping. As

for cooperative workloads in which CPU and GPU execute

the same context in a coherent APU-like system, network

traffic will be even higher due to coherence. For example GPU

requests would create additional coherence network traffic

from CPU cores as well. So we would see traffic from both

CPUs and GPUs at the same time, and a single memory

request might result in multiple network messages, leading

to even more traffic in the NoC.

TABLE III: GPU benchmarks

# Suite Application Abbr.

1 CUDA SDK BlackScholes BLK

2 CUDA SDK MUMerGPU MUM

3 CUDA SDK RAY Tracing RAY

4 Rodinia Backpropagation BP

5 Rodinia Hotspot HOT

6 Rodinia Pathfinder PATH

7 Parboil Lattice-Boltzmann Method LBM

8 Parboil Sum of Abs. Differences SAD

9 Parboil Sparse-Matrix-Mul. SPMV

10 LonestarGPU Bread First Search BFS

11 LonestarGPU Min. Spanning Tree MST

12 LonestarGPU Single-Source Shortest Path MST

TABLE IV: CPU benchmarks

CPU app. category Applications L2 MPKI range

Low povray, namd, dealII, gobmk [0.2, 2.3]

Medium sjas, astar, sjbb, ocean, libquan-
tum, xalan

[4.8, 22]

High milc, soplex, omnetpp, mcf [25, 112.4]

C. Evaluation of Network Prioritization

We first study the effect of network prioritization standalone,

before exploring our integrated approach OSCAR. Figure 14

compares different prioritization schemes. There are several

important observations to be highlighted here: 1) With CPU

prioritization, there is a clearly performance improvement for

all the benchmarks, the average weighted-speedup improve-

ment is 5.2% and can be as high as 10.2%, compared to

the baseline; 2) With read prioritization only, the average

performance improvement is small (about 1.6%), because even

though read requests are always prioritized, the enormous GPU

read requests win most of the shared resources and cause

delay to CPU read requests; and 3) When incorporating both

prioritization schemes as demonstrated in Figure 13, we can

achieve an additional 6.9% CPU performance improvement

over the STT-RAM LLC based baseline, with the highest

performance increase being 13.5%.
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Fig. 14: The overall CPU performance with different NoC priori-
tization schemes, when running the same multi-programmed CPU
workloads (see Table IV) with different GPU workloads (X axis).

As illustrated before, GPU applications have better latency

tolerance. Figure 15 shows that the impact of different pri-

oritization policies on GPU performance is negligible. The

average IPC loss is only 1.0% with an integrated CPU and

read prioritization, compared to the baseline.
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Fig. 15: The overall GPU performance with different NoC priori-
tization schemes, when running the same multi-programmed CPU
workloads (see Table IV) with different GPU workloads (X axis).

D. Evaluation of Multi-Network Setup

Here we evaluate how network isolation with separate CPU

and GPU network would affect the CPU and GPU perfor-

mance. As mentioned in Section IV-A, we assume the total

network channel width is fixed. Furthermore, we divide the

total channel width into four shares and assign different shares

to the CPU/GPU network. For example, for a total channel

width of 256 bits, “3G1C” means 192 bits for GPU network

and 64 bits for CPU network. Figure 16 shows the performance

results. On average, 3G1C, 2G2C, and 1G3C increase the

overall CPU performance by 6.3%, 9.9%, and 4.5%, while

decreasing the overall GPU performance by 2.5%, 14.3%,

and 48.0%, respectively. A counter-intuitive observation here

is that, when the majority of NoC resources is allocated to

CPUs (e.g., 1G3C), the CPU performance starts to decrease.

This is because most CPU packets stall at the MCs, blocked by

GPU packets (due to the reduction of GPU network resources)

that are waiting in MCs to be injected into the reply network.

In this scenario, increasing CPU network resources causes

bandwidth reduction of GPU reply network that in turn blocks

CPU packets at the MCs. This phenomenon is also observed

by others [3], [14].

0.7 

0.8 

0.9 

1 

1.1 

1.2 

1.3 

1.4 

1.5 

BLK MUM RAY BP HOT PATH LBM SAD SPMV BFS MST SP GeoMean 

N
o

r
m

a
li
z
e

d
 C

P
U

 W
S

 

Overall CPU Performance with Different Network Isolation 

Baseline (Shared NoC) separate (3G1C) 

separate (2G2C) separate (1G3C) 

Fig. 16: The impact of network isolation to CPU performance, when
running the same multi-programmed CPU workloads (see Table IV)
with different GPU workloads (X axis).
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Baseline (Shared NoC) separate (3G1C) 
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Fig. 17: The impact of network isolation to GPU performance, when
running the same multi-programmed CPU workloads (see Table IV)
with different GPU workloads (X axis).

Generally, network isolation benefits CPUs. However, the

performance degradation to GPUs will be severe if the ma-

jority of channel width is allocated to CPUs. Therefore,

such static bandwidth partitioning may result in detrimental

performance due to the unpredictable traffic pattern.

E. Evaluation of OSCAR

As illustrated in Section IV-A2, our proposed OSCAR is

the integration of asynchronous batch scheduling and priority

based allocation techniques, with STT-RAM based LLC. In

addition to the conventional SRAM LLC and the direct STT-

RAM replacement design, we also compare OSCAR against

a read-preemptive [42] scheme for STT-RAM cache and the

GPU concurrency management [23] policy. Results are shown

in Figure 18 and Figure 19.
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Fig. 18: The overall CPU performance analysis with STT-RAM Based
LLC and NoC support, when running the same multi-programmed
CPU workloads (see Table IV) with different GPU workloads (X
axis).
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SRAM Baseline STTRAM Baseline read-preemptive 
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Fig. 19: The overall GPU performance analysis with STT-RAM
Based LLC and NoC support, when running the same multi-
programmed CPU workloads (see Table IV) with different GPU
workloads (X axis).

For CPUs, OSCAR improves the overall performance by

11.2% over the LLC design with simple STT-RAM replace-

ment. When compared to the traditional SRAM based LLC

for heterogeneous multicores, OSCAR can improve the overall

CPU performance by 17.4% on average and up to 67.4%. In

contrast, read-preemptive scheme improves the CPU perfor-

mance by 3.9%. When GPU concurrency control is coupled

with SRAM or STT-RAM, the average performance increase

is 7.3% and 11.2%, respectively.

For GPUs, OSCAR only causes 5.6% performance degra-

dation compared to the STT-RAM baseline. Overall, OSCAR

improves the GPU performance by 10.8% compared to the

SRAM baseline. The read-preemptive scheme can increase

the STT-RAM performance by 1.4%. The GPU concurrency

control incurs nearly 6.8% performance drop for GPUs with

a small SRAM based LLC. With a STT-RAM replacement, it

can increase the GPU performance by 8.5%.

F. Energy Analysis

Here we evaluate how our design influences the total

LLC energy consumption. As shown in Table II, STT-RAM

achieves significant lower leakage power compared to the
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(c) Overall GPU performance with the new layout

Fig. 20: Alternative layout with CPUs and GPUs clustered on different sides and the corresponding performance results under different
optimizations, when running the same multi-programmed CPU workloads (see Table IV) with different GPU workloads (X axis).

SRAM counterparts. However, the dynamic energy associated

with STT-RAM write operations are also much higher than

SRAM. Figure 21 shows the normalized total LLC energy

consumption for the traditional SRAM based LLC and our

STT-RAM based design.
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Fig. 21: Comparison of LLC energy consumption

The energy impact of our design is application-dependent.

For CPU mixes with GPU applications like BLK, MUM, RAY

and BP, the overhead of slow writes outweighs the leakage

savings, indicating high write density (number of writes per

time unit) during execution. On the other hand, CPU mixes

with GPU applications like PATH, SAD, and MST achieve sig-

nificant energy savings with less intensive writes. On average,

OSCAR achieves 28.9% LLC energy savings. Although it is

out of the scope of this paper, there are existing optimizations

to achieve more energy savings by relaxing the non-volatility

of STT-RAM [39], [22]. Furthermore, hybrid SRAM/STT-

RAM cache designs were also proposed to direct intensive

write operations to a small portion of SRAM cache banks to

reduce the impact of the energy/latency overhead associated

with the write operation of STT-RAM [42], [45]. Nevertheless,

our NoC management policy can also be applied to such hy-

brid LLC cache designs to achieve further performance/energy

improvement.

We have implemented the modified allocator in Verilog

for the asynchronous batch scheduling and priority based

allocation. The area overhead is obtained by synthesizing

our Verilog using the Synopsys Design Compiler, with 45nm

technology node. In total, our design only adds 0.0052 mm2

area per router, which is a negligible 1.8% overhead.

G. Sensitivity Study with Alternative Layout

We also evaluate our design on a different layout as shown

in Figure 20a, which clusters CPUs and GPUs and places them

on opposite sides of the chip. That also creates an asymmetric

set of traffic patterns as the high-bandwidth GPU traffic is

coming from one side of the chip, and the lower-bandwidth

but latency-sensitive traffic comes from the other side.

We conduct similar comparisons over different optimization

techniques. Overall, OSCAR performs the best for CPUs,

with performance increase of 16.1% across all the workloads.

In contrast, the read-preemptive design achieves only 3.1%

performance improvement. When GPU concurrency control is

coupled with SRAM or STT-RAM, the average performance

increase is 7.6% and 11.5%, respectively.

For GPU applications, even though performance degra-

dation happens compared to the STT-RAM baseline as we

prioritize CPUs over GPUs, the degradation is insignificant

and we can still achieve a 9.8% IPC increase compared to the

conventional SRAM based LLC design. The read-preemptive

scheme does not give further performance benefit to the STT-

RAM in this case. Similarly, the GPU concurrency control

incurs about 6.4% performance drop for GPUs with a small

SRAM based LLC. With a STT-RAM replacement, it increases

the GPU performance by 8.7%.

VI. Related Work

Managing Interference in Heterogeneous Multicores. In

heterogeneous multicores, CPU and GPU applications inter-

fere with each other in shared resources. Lee and Kim [27]

reduces the performance impact of limited LLC capacity by

cache partitioning to isolate CPU and GPU traffic in LLC.

Here we address the same problem directly at its source, by

employing STT-RAM to increase the cache capacity. Lee et

al. [29], [28] address the NoC contention by proposing an

adaptive VC partitioning mechanism. Yin et al. [46] propose

to route GPU packets through non-minimal paths because of

their latency-tolerance. Our NoC optimizations take STT-RAM

properties into account to prioritize reads over writes. Kayiran

et al. [23] manage the interference by throttling the number

of concurrently executing GPU warps. To reduce the inter-

ference of CPU and GPU traffic in DRAM, Ausavarungnirun

et al. [2] develop a memory scheduling technique to group

memory requests based on row-buffer locality. There are other

works [21], [51], [50] that provide NoC optimizations for GPU

systems only.

STT-RAM LLC Management. To address the asymmetric

read and write problem in STT-RAMs, Sun et al. [42] use

a read-preemptive scheme with write buffers which prioritizes



cache read operations to slow write operations. Zhou et al. [49]

propose early write termination to reduce the STT-RAM

write overhead. In contrast, we propose light-weight NoC

optimizations to address these problems without incurring

extra hardware overhead in the cache. Mishra et al. [33]

address the slow write problem by scheduling critical read

requests in the network to idle STT-RAM banks. However,

we deal with not only the interference of read/write requests

but also CPU/GPU requests in the network. Samavatian et

al. [38] explore STT-RAM based L2 cache for GPUs and

partition the STT-RAM into high/low retention regions through

non-volatility relaxation. While there are many STT-RAM

LLC optimization techniques [44], [30], [45], we observe the

performance bottleneck has shifted to the network backbone

with large enough LLC capacity, thus providing NoC support

to maximize the potential of STT-RAM LLC. Meanwhile,

there are studies [47], [20] on STT-RAM based buffer designs

for NoC.

Application-Aware NoC Optimization. Das et al. [9], [10]

explore the criticality of different packets and propose prior-

itization schemes in the NoC routers based on their ”stall-

time criticality” or ”latency slack”. In contrast, our NoC

management policy is not only application-dependent due

to heterogeneous CPU and GPU workloads, but also cache-

dependent due to the asymmetric read/write performance

of STT-RAM. Other prior works [43], [25], [12], [48] use

application-aware NoC optimization techniques to improve

reliability or timing-correctness.

There are related work [26], [15], [37] on frame-based

scheduling. Regardless of dealing with a new context with

heterogeneous workloads, our asynchronous batch schedul-

ing employs different methods. The global-synchronized

frame [26], [15] treats the entire NoC as a ”MUX” with global

synchronization and suffers from large frame sizes, under-

utilization of excess bandwidth, etc. The local-synchronized

frame [37] schedules packets based on their ages. It is a flow-

based scheduling algorithm for IP flows in real-time embed-

ded systems, and does not deal with packets with different

priorities/criticalities. Moreover, all the flits in a frame are

treated equally in work [37] whereas OSCAR differentiates

the criticality of CPU/GPU and read/write flits.

VII. Conclusions

Heterogeneous multicores raise challenges to the shared

on-chip resources such as LLC and NoC. We study the

replacement of the conventional SRAM based LLC by STT-

RAM, which can provide much larger capacity to mitigate

the contention of CPU and GPU accesses in LLC while

saving leakage power. In addition, we propose asynchronous

batch scheduling and priority based allocation schemes in

the NoC to address the interference of CPU/GPU traffic and

asymmetric read/write operations to STT-RAM. Simulation

results demonstrate averaged 17.4% and 10.8% performance

improvement for CPUs and GPUs, respectively, and 28.9%

energy saving for the entire LLC.
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