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Abstract—In this paper, we conduct a systematic analysis to
show that existing CPU optimizations targeting scientific/server
workloads are not always well suited for mobile apps. In particu-
lar, we observe that the well-known and very important concept
of identifying and accelerating individual critical instructions
in workloads such as SPEC, are not as effective for mobile
apps. Several differences in mobile app characteristics including
(i) dependencies between critical instructions interspersed with
non-critical instructions in the dependence chain, (ii) temporal
proximity of the critical instructions in the dynamic stream, and
(iii) the bottleneck shifting to the front from the rear of the
datapath pipeline, are key contributors to the ineffectiveness of
traditional criticality based optimizations. Instead, we propose
the concept of Critical Instruction Chains (CritICs) – which are
short, critical and self contained sequences of instructions, for
aggregate level optimization. With motivating results, we show
that an offline profiler/analysis framework can easily identify
these CritICs, and we propose a very simple software mechanism
in the compiler that exploits ARM’s 16-bit ISA format to
nearly double the fetch bandwidth of these instructions. We have
implemented this entire framework - both profiler and compiler
passes, and evaluated its effectiveness for 10 popular apps from
the Play Store. Experimental evaluations show that our approach
is much more effective than two previously studied criticality
optimizations, yielding a speedup of 12.65%, and energy savings
of 15% in the CPU (translating to a system wide energy savings
of 4.6%), requiring very little additional hardware support.

Index Terms—Criticality, CPU, Mobile, Energy

I. INTRODUCTION

The proliferation of mobile devices over the past decade

has been fueled by not just hardware advancements, but also

by the numerous and diverse applications (apps) that these

devices can support. The number of such devices far exceeds

the desktop and server markets, with nearly 2.6 billion mobile

devices serving more than 35% of the world population today

[1]–[3]. To a large extent, the hardware and software evolution

of these devices has drawn from lessons learned over the

years from their desktop/server counterparts and adapted them

for different resource constraints – energy/power, form-factor,

etc. On the other hand, many of the mobile apps have very

different characteristics, and are used in very different ways

compared to desktop/server workloads (e.g., high amount of

user-interaction, handling sensors, etc.). And so, it is not clear

whether the same high-end device optimizations are effective

for the mobile platforms.

Picking two well-studied optimizations (instruction priori-

tization and memory prefetching) that try to exploit a very

important property, namely “criticality”, of the instructions

in server/desktop domains, this paper points out that these

mechanisms are not well suited to mobile apps. Instead, this

work proposes to track criticality at the granularity of self-

contained instruction chains, and assigns a criticality metric to

each chain. With the bottleneck shifting from the rear to the

front of the CPU datapath pipeline in these mobile apps, this

paper introduces a novel way of prioritizing and aggregating

these Critical Instruction Chains (CritIC) in software to solve

this problem, requiring little to no additional hardware support.

While one could throw extra resources and hardware

mechanisms into a superscalar processor’s datapath to boost

performance in embedded domain, it is even more important

to better utilize the existing resources amongst the competing

instructions, especially in resource-constrained environments.

One such well studied mechanism for prioritization amongst

competing instructions is based on “criticality”. When a critical

instruction is brought into the processor datapath, different

prioritizations/optimizations can be employed. Over the years,

numerous criticality based optimizations have been proposed

and studied for high-end workloads - prioritizing CPU resources

[4]–[7], caches [8]–[10], memory request queues [11]–[13],

predicting the result of the instruction [14]–[17], issuing

prefetch requests [18], etc. However, the impact of these

optimizations has not been studied to date for mobile workloads,

and that is one important void this paper intends to fill.

Unlike many desktop/server workloads which are very

throughput demanding, mobile apps are highly user-interactive.

User actions like screen swipes, and sensor inputs like po-

sitional (GPS) and/or movement (accelerometer) frequently

control the execution, with the app reacting to such actions

and coming back for additional inputs. The consequent code,

though rich in the conventionally deemed “critical instructions”,

are not conducive enough for independent instruction-level

optimizations, i.e., they are often dependent on each other with

possibly one or more non-critical instructions coming into the

dependence chain between them. For instance, we show that one

such recent optimization [18], which prioritizes critical loads,

does very well for SPEC workloads (as in prior works), but

provides a measly 0.7% speedup for a wide spectrum of mobile

apps. Any criticality optimization targeting mobile apps should,

thus, consider these sequences/groups of critical instructions at

a time, rather than optimize for each individually. We identify

two additional differences: (i) the bottleneck for these critical

instructions shifts from the back-end (Execute/Commit stages

of the superscalar pipeline) to the front-end (Fetch stage) of

the pipeline when we move from SPEC to mobile apps; and

(ii) sequences/groups of critical instructions are much smaller,

and occur close together in the dynamic execution stream, for

mobile apps compared to SPEC workloads, making them more

amenable for aggregate-level software based optimizations.

We are not aware of any prior work which has pointed out

the insufficiencies of criticality-based individual instruction

optimizations for mobile apps, and their workload differences



requiring a revisit of this topic in the mobile context.

Motivated by this insight for several off-the-shelf Android

apps, we make the following contributions in this work:

• We use the concept of a self-contained Instruction Chain (IC)

within a Data Flow Graph (DFG), which can be executed

independent of other instructions, when encountered. We

introduce a criticality metric for an IC, that is calculated as

the average fan-out per instruction in that chain. ICs with a

criticality exceeding a threshold are marked as CritICs, and

the entire CritIC sequence of instructions is given priority.

Unlike SPEC, CritICs in mobile apps are relatively short

(order of 5 instructions) and are not that widely spaced out in

the dynamic instruction stream either, making them suitable

for software (e.g., compiler, profiler) identification.

• We note that CritIC instructions in mobile apps are bottle-

necked in the Fetch stage of the pipeline, as opposed to

SPEC which are back-ended (execute/commit stages), since

the number of high latency instruction is a much smaller

fraction in the former. Both the producer side which feeds

instructions into the pipeline, and the consumer side which

drains the instructions from the fetched queue are equally

important contributors to this bottlenecked stage.

• Our identification of Critical and Self-contained ICs, pro-

vides a convenient abstraction for tackling the fetch bottle-

neck. We could theoretically hoist and aggregate all these

instructions together as a macro instruction. But the number

of possible CritIC sequences makes this option expensive.

Adhering to the philosophy of imposing minimal hardware

enhancements, we instead propose a novel approach to

doubling the fetch bandwidth for these CritIC instructions by

leveraging ARM’s 16-bit instruction format. We convert all

these instructions into the 16 bit representation in a compiler

pass, as long as there is no loss in their functionality, together

with a preceding command to instruct the ARM hardware to

switch to 16-bit format for these instructions. This proposed

hoisting and 16-bit conversion from the software side can be

employed in all current ARM CPU based devices [19]–[21].

• We have implemented a profiler on top of the AOSP

emulator [22] and GEM5 simulator [23] for identifying

CritIC sequences. We have also added a compiler pass in

the Android Runtime Compiler (ART) to hoist, aggregate and

emit the 16-bit representations for the CritIC instructions.

We have evaluated our proposal in GEM5 for a Google

Tablet configuration using a diverse and popular suite of 10

stock Android apps from the Play Store.

• Results show that our approach provides as much as

15% speedup (12.65% speedup on the average) for these

apps, while two previously well regarded single instruction

criticality based load prefetching and single instruction

prioritization provide only 0.7% and 5% speedup on the

average. The 16-bit representations nearly doubles the fetch

bandwidth for all CritIC sequences, buying back 3.6% of the

time on the producer-side of the fetch. Packing them back-

to-back reduces the data flow time across these instructions,

buying back 2.5% of the time on the consumer-side of the

fetch. All this is achieved with little to no extra hardware

requirements in the existing processor datapath.

• While one could increase i-cache capacity, improve branch

prediction accuracies, and/or employ instruction prefetchers

to address the fetch bottleneck, all these may require extra

hardware than what current mobile platforms support because

of resource-constraints. Even if future platforms incorporate

such additional hardware to address the fetch problem, we

show that our simple software technique can do as well

as any of these hardware approaches (even a platform that

has 4× the i-cache capacity and a perfect branch predictor).

Further, it can synergistically provide an additional 11%

speedup over what these hardware techniques can provide.

• It may appear that one could opportunistically use the 16-bit

ARM format for all instructions to optimize the fetch stage

for all instructions. We show that while this can provide

6% improvement, our approach of identifying, hoisting and

grouping CritIC sequences, and selectively using the format

for such instruction sequences, does much better (12.65%).

In fact, using our solution, and then opportunistically using

the 16-bit format for other instructions, complement each

other to provide 16% improvement.

II. CRITIQUING CRITICALITY

Within the confines of the given resources of a superscalar

processor, one of the most important issues is deploying and

assigning these resources to the incoming stream of instructions.

This is essentially determined by the priority order (scheduling)

for fetching and executing these instructions. When there are

adequate resources, we would give all instructions the resources

that they need. However, when resources are constrained,

priority has to be given to “critical instructions” [4], [9], [12],

[24]–[26]. In this work, we use a simple definition of criticality,

similar to those in some prior works [4], [26] - an instruction

is critical if its execution time becomes visible (i.e., does not

get hidden) in the overall app execution.

A. Conventional criticality identification

As per the above definition, an instruction can be marked

critical, only after its execution - by which time it is too

late to assign resources for it. Hence, prior works propose

different ways of estimating criticality of an instruction before

it is even fetched. Two common heuristics for marking an

instruction as critical are by using thresholds for (i) execution

latency of an instruction (a long latency instruction implies
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Fig. 1: (a) Despite having frequent Critical Instructions, mobile apps do not
benefit as much. (b) Reason: Critical instructions in SPEC do not depend
much on other critical instructions. But, Android apps have two successive
high-fanout instructions in a dependence chain, with 0(direct-dependence) to
5 low fanout instructions between them.



instructions depending on it have to be delayed, thus making

it more critical) [8], [9], [26] and (ii) number of dependent

instructions (referred to as fanout in this paper), particularly in

the ROB at the time the instruction is being executed (as many

instructions require its output before they can begin). A table

is maintained for those instructions exceeding the threshold

based on prior execution (similar to branch predictors), and

upon an instruction fetch, this table is looked up with the PC

to find whether that instruction is critical or not.

B. Do these criticality schemes work for mobile apps?

Different optimizations can be employed upon fetching a crit-

ical instruction - prioritizing CPU resources [26]–[28], caches

[8], [9], [18], memory requests [11], predicting instruction

results [14], [29]–[31], issuing prefetches [18], etc. Until now,

these optimizations have been primarily proposed and evaluated

for server/desktop workloads and not for mobile apps/platforms.

(a) Example DFG
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(b) Timing in superscalar processor with issue width 2
Fig. 2: Illustrating why high-fanout prioritization may not help.

Without loss in generality, we have

taken two representative, well-

studied and well-proven critical-

ity optimizations in prioritizing

two important resources - one for

memory which issues prefetches

for critical loads [18] and another

for ALU resources in instruction

scheduling [4], [32], [33]. These

proposals identify high-fanout loads to mark them as critical

to issue prefetch [18] and prioritize the critical instructions

for ALU resource allocations [32], [33]. These techniques

have shown significant benefits for server workloads. The high-

fanout based optimization has also been shown to outperform

the latency based ways of identifying and exploiting criticality

[18], [34]. We next evaluate the usefulness of both these

criticality optimizations (depicted as bars) in mobile apps and

compare the mean speedup obtained from employing both

these techniques for SPEC.int, SPEC.float and Android apps

in Fig. 1a (experimental details are in Sec. IV-B).

As can be seen, the performance gains from prefetching

high-fanout loads and prioritizing them at ALU resource

scheduling are both quite significant for SPEC.int (15% from

prefetching, 9% from prioritizing) and SPEC.float (34% from

prefetching, 25% from prioritizing), re-affirming prior results

[18], [33]. Interestingly, the gains from these two optimizations

are a relatively measly 0.7% from prefetching and 5% from

prioritizing in the mobile apps. Based on this, one may think

that perhaps mobile apps do not have a significant number

of high fanout loads/ALU instructions to benefit from these

optimizations. On the contrary, we observe that (in right y-axis

of Fig. 1a) the mobile apps have a much higher percentage of

critical instructions than their SPEC counterparts. This should

have, in turn, resulted in more opportunities for optimizing

the execution. To understand why this is not the case, we next

identify scenarios where these optimizations may not work and

point out that such scenarios are common in mobile apps.

C. Why do they not work?

Fig. 2a shows an example DFG (Directed Flow Graph)

where, executing the first instruction I0, triggers ten following

instructions (I1 to I10) to become ready for execution. Any high

fanout optimization will obviously execute I0 first. After this

step, let us say I10 again has a fanout of 10 (i.e., instructions I11

to I20 become ready), which would cause I10 to be prioritized

in the execution over say I1. If, subsequently, I11 and I12

each have 2 fanouts and each of I13 to I20 has a fanout of

just 1, I11 and I12 will get scheduled before I13 to I20. But

since each of I13 to I20 instructions has a fanout of 1, a high-

fanout instruction prioritization will not differentiate between

them. Note that, I20 in turn has a dependent high fanout

instruction, I22, that cannot be scheduled till I20 is completed.

So, as seen in Fig. 2b, by not doing this optimization of

prioritizing I20 over its siblings, single a instruction criticality

optimization scheme as described previously, stalls 2 cycles (12,

13) in the execution. This scenario occurs commonly in mobile

executions (explained below), where an instruction despite

having a low fanout, requires high-priority since there is a

subsequently dependent high-fanout instruction. Consequently,

it is insufficient to optimize individual high-fanout instructions

independently. Instead, the whole sequence of dependent

instructions from 〈I0, I10, I20 to I22〉 should be scheduled as

early as possible, even though I20 is a low-fanout instruction.

We find evidence of this scenario occurring much more in

mobile apps compared to their SPEC counterparts as shown in

Fig. 1b, which breaks down the dependence chains containing

high-fanout instructions in terms of the number of low-fanout

instructions between two successive high fanout instructions

in a dependence chain. We find that the dependence chains

can have between 1(22%) to 5(7%) low-fanout instructions

in the dependence chain between two high fanout critical

instructions, for cumulatively 52% of the time in Android apps.

On the other hand, the SPEC.float and SPEC.int apps have no

dependent high-fanout instructions for around 60% and 35% of

the time. Compare that to Android apps, where this hardly ever

happens, i.e., there is at least 1 low fanout instruction between

2 successive high fanout, and thereby critical ones. It is no

surprise that SPEC apps benefited from optimizing each critical

instruction individually as opposed to Android ones, where

such dependent chains reduce the effectiveness of individual

optimizations. These mobile app results also suggest that:

(a)prioritizing/optimizing each critical instruction individually

as it comes (i.e., for the “present”) would not be as effective

in rightfully apportioning the given resources; and (b)we

need to consider these temporally proximate and dependent

critical instructions (chains/sequences) together for possible

optimizations, i.e., look into the future as well. Traditional

criticality based optimizations [9], [11], [12], [18] have targeted

one critical instruction at a time, rather than groups or chains.



D. What do these instructions need?

Before optimizing for these closely occurring and dependent

critical instructions in Android apps, it is important to under-

stand where they spend their time amongst the different super-

scalar pipeline stages. Towards this, we present a breakdown

of their execution profiles amongst these stages in Fig. 3(a).
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Fig. 3: (a) Fetch to Commit breakdown of high-fanout instructions in SPEC vs Android (b) In Android, Fetch is more
bottlenecked due to both (i) stalling for instructions to be fetched (F.StallForI), and (ii) stalling for resources and
dependencies (F.StallForR+D) to move the instructions down the pipeline. (c) Mobile apps have fewer high latency
instructions compared to SPEC.

In the same graph, we

provide a similar pro-

file for critical instruc-

tions identified by the

same ”high fanout” met-

ric in the SPEC.float

and SPEC.int apps. From

these results, we observe

the following: (i) unlike

SPEC apps, where the

Execute stage, and conse-

quently the back-pressure

in ROB queue residen-

cies, are quite dominant,

the Android apps have a

much lower Execution stage latency (and consequently the

ROB residency). The mix of critical instructions in Android

apps do not take as much execution time (fewer long latency

instructions compared to their SPEC counterparts as shown in

Fig. 3(c)). (ii) However, the fetch stage, and the decode stage

to some extent, are much more dominant in Android apps,

compared to the SPEC ones (due to the drop in contribution

from the Execute stage). As much as 40% of the time goes

in the Fetch stage, while similar critical instructions in SPEC

spend less than 5% of their time in this stage.

This shift in the profile from the rear to the front Fetch stage

(consumes 40%) of the pipeline in Android, warrants us to take

a closer look into this stage. Fig. 3(b) breaks down the Fetch

execution time in these apps into two parts - F.StallForI,

which is responsible for supplying the instruction stream into

this stage, and the F.StallForR+D which pulls out the

instruction from this stage for subsequent decoding. The former

depends on the I-cache latency, miss costs, and branch mis-

prediction costs, while the latter is largely determined by the

back-pressure exerted by the subsequent pipeline stages (i.e.,

wait for decode to commit time for the prior instructions).

The relative contributions of the F.StallForI and

F.StallForR+D (2:3) to the overall Fetch side overheads are

quite comparable across the SPEC and Android apps. However,

the actual values are quite different. While F.StallForI

contributes to 3% of the overall execution in SPEC, Android

apps execute from a much larger code base with a diverse

set of libraries (>7k APIs [35]–[37]) with more frequent

function calls, which causes i-cache stalls for 15% of the

execution and branch prediction stalls for another 2% from the

F.StallForI. At F.StallForR+D, SPEC apps execute

many high-latency instructions that creates a back-pressure on

the fetch stage by 3.6% (out of the 5.4% in SPEC.float) and

13% (out of 21% in SPEC.int). In Android apps, as shown

in Fig. 3(c), majority of the high-fanout instructions are low-

latency instructions, not imposing much back-pressure from the

execute stage itself (6% out of 40%). Instead, the dependence

resolutions between various instructions (as discussed in Fig.

1b) causes the most stall (11%) for the F.StallForR+D

in these apps. Thus, any optimization for these critical

instructions should try to reduce both F.StallForI and

F.StallForR+D latencies, i.e., a simple i-cache/branch-

prediction optimization, or a back-end optimization alone may

not suffice as we will show later on.

Key Insights on Android Apps: (a) With high fanout,

and thereby ”critical” instructions occurring in close temporal

proximity with one or more non-critical/low-fanout instructions

in the dependence chain between them, we should consider

optimizing groups/sequences of these instructions concurrently,

rather than one at a time; (b) Fetch stage is much more

important for these instructions, and optimizations for this stage

are likely to yield more rewards than throwing more hardware

for the conventionally bottlenecked execute-to-commit stages;

(c) We need to accelerate not just the rate of bringing in the

instructions to the Fetch stage, but also accelerate the rate of

pushing out instructions into the rest of the pipeline.

III. CRITICS: CRITICAL INSTRUCTION CHAINS

Having identified the requirements, we now explore (i)

how to identify these ”critical” instructions occurring in a

dependence chain/sequence in close temporal proximity, and

(ii) how to optimize for these sequences to provide the minimal

F.StallForI and F.StallForR+D latencies in the fetch

stage with minimal hardware extensions.

A. Identifying CritICs

1) CritIC Sequences: As was shown in the example in

Fig. 2a, identifying and optimizing for individual high fan-

out, and thereby critical, instructions can only provide limited

options. Instead, we need to look into the future, and find other

possible future critical instructions which are in its forward

dependence chain/graph. Consequently, the entire chain should

be prioritized/optimized even if intermediate instructions in

the forward dependence chain (such as I20 in the forward

dependence chain of 〈I10, I20, I22〉) may not traditionally

have been marked as critical because of their low fan-outs.

Towards identifying such “Critical Instruction Chains (CritIC)”,

we first introduce the following metric and definitions.



Instruction Chain (IC): An instruction chain is any

acyclic path of a Data Flow Graph (DFG) that is independently

schedulable at that instant in the execution. In our previous

example DFG of Fig. 2a:

• The paths 〈I0, I10, I20, I22〉 and 〈I0, I10, I11〉 are

independent of the other paths in the DFG. So, they are

independently schedulable, and both qualify as ICs.

• The path 〈I0, I1, I21〉 does not qualify as an IC as it

depends on another path, 〈I0, I10, I11, I21〉 and is thus

not independently schedulable.

• Still, the sub-path 〈I0, I1〉 qualifies as an IC as it does not

depend on any other paths of this DFG, i.e., any sub-path

of an IC is also an IC.

An IC is thus a self-contained sequence of instructions, and

is executable as an atomic entity (e.g., a macro instruction [38]–

[44] consisting of several micro-instructions in the sequence)

without any dependencies into its individual instructions. We

will exploit this property later when optimizing critical ICs.

Crit: At any instant, a DFG has several individual

ICs. The goal is then to find the right order for executing

these ICs - to prioritize based on their relative criticalities.

(a) Example DFG
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(b) Timing in superscalar processor with issue width 2
Fig. 4: Example: Need to optimize CritICs

For example, in Fig.

4b, the execution at

the top (high-fanout

optimization) shows

that prioritizing an

IC with low-fanout

instructions, 〈I1, I6,

I7, I8, I9, I10, I11,

I12〉 is inefficient -

as observed in cy-

cles 10, 11, the ex-

ecution becomes se-

rialized and there is

no ILP for 2 cycles.

However, identi-

fying the relative

criticalities of ICs

is non-trivial, since

each instruction in an IC can have a different fan-out/criticality.

Simply adding up the fan-out of all its constituent instructions

may not paint an accurate measure of an IC’s criticality since

there could be high variance amongst its instructions - a

cumulatively high-fanout IC may have a very high fanout

instruction at the beginning, with all subsequent instructions

ending up with very low fanout, or vice-versa. While one

could consider higher order representations for capturing such

variances in future work, in this paper, we use a simple average

fanout per instruction of an IC to capture the criticality of

an IC. ICs whose average fanout per instruction exceed a

certain threshold (e.g. 8) are marked as CritIC sequences in

this work. Fig. 4 gives an example DFG, where a conventional

instruction-level fanout based prioritization would give an

execution as in the top part of (b) taking 14 cycles on a

2-way issue superscalar processor, while our CritIC approach

would identify two ICs 〈I1, I6, I7, I8, I9, I10, I11, I12〉 and

〈I0, I5, I18〉 and prioritize the latter over the former because of

its higher average fanout per instruction (4 vs. 2). This results

in a schedule as in the lower part of (b), taking only 13 cycles.

2) How to find them?: There are two broad strategies for

identifying CritICs: (a) using hardware predictor tables as

used in many prior works [4], [8], [12], [24] and/or (b) using

software profile-driven compilation. As explained, we would

like to minimize hardware requirements as much as possible,

especially since mobile devices can become highly resource

constrained. So we opt for the latter approach, which raises

additional issues that we address as discussed below:

• Ability to do this without User Intervention: Unlike desktop

environments where users may write their own apps, many

of the mobile apps are published a priori (on the Play

store, iTunes, etc.). It is not unreasonable for many of these

popular apps to have undergone a profile-driven compiler

optimization phase, which many of them already do (for

quality, revisions, performance, bugs, etc. [45], [46]) before

they get published. Our solution can be integrated into such

phases for appropriate code generation.

• Dealing with diverse inputs (user-interactivity): Even if apps

are available a priori, their execution can depend a lot on

the input data - this is especially true for mobile apps which

have high user interactivity. Conveniently, common cases of

user inputs are readily provided for many of these apps in

standard formats [47], [48], that we avail for our approach.

• Ability to track long ICs and their spread: Software based

approaches are often criticized because of their restricted

scope in analyzing large segments of code concurrently. This

would pose a problem if the ICs were long and spread out

considerably in the dynamic instruction stream. For instance,

if we were to apply our approach for SPEC apps, Fig. 5a

shows that we would need to track ICs of lengths up to

1.3K, which are spread over up to 6.3K instructions in

the dynamic stream. On the other hand, in our favor, ICs

for the mobile apps (as shown in the Fig. 5a), are at the

maximum 20 instructions long, and are at most spread over

540 instructions to make them conducive to our approach.

• Tractability of tracking all ICs: Even when tracking 5 to 10

instruction long ICs, an app execution can generate a huge

volume of profile data (100s of GB of CritIC sequences),

with numerous sequences at any given instant. So, instead of

tracking and optimizing for every possible CritIC sequence

in an app, we track the top few CritIC sequences based

on their coverage in the dynamic execution stream. This

substantially reduces the profile size to a few kBs.

We have built this profile-driven compilation framework to
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Fig. 5: (a)IC length and their corresponding spread in dynamic instruction
execution in SPEC vs Android apps; (b)CDF of coverage by unique CritICs.
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Fig. 6: Each CritIC instruction is transformed from the original 32-bit format
to the 16-bit Thumb format of ARM ISA [51], [52].

automatically identify and optimize the CritIC sequences in a

large number of Android apps. The app execution is profiled us-

ing AOSP emulation [22], [49] and GEM5 hardware simulator

[23] to get the instruction stream from which we identify the

CritIC sequences. The on-device Android Runtime Compiler

(ART compiler) then generates optimized ARM binary using

various compiler optimization passes [50]. After these passes,

we have implemented an additional instrumentation pass in

the compiler which visits every CritIC in the optimized DFG

generated, to generate the optimization that is discussed next.

B. Optimizing CritIC Sequences

Our solution to optimizing these sequences is motivated

by the two important observations: (i) CritIC sequence

instructions spend nearly 40% of their execution in their

fetch stage, with both F.StallForI and F.StallForR+D

contributions becoming equally important; and (ii) Each

CritIC sequence’s instructions are ”self-contained” and can

execute in sequence without being influenced by any other

sequence. Ideally, each CritIC sequence could, thus, be

made a macro-instruction whose functionality is equivalent

to executing each of its constituent instructions one after

another. If our compiler could replace this entire sequence

by the corresponding macro-instruction, we would avoid

individual fetches for each of the constituents, and incur only

1 fetch operation - this would reduce the F.StallForI

contribution. Further, by hoisting up this entire dependent chain

of critical instructions into a single macro-instruction, we have

reduced/eliminated any unnecessary gap between them, thus

shortening the data flow from one to the other - this would

reduce the F.StallForR+D contribution waiting for the later

stages of the pipeline to flush out.

Creating Macro-Instructions: One obvious choice for

implementing such macro-instructions is by extending the ISA

with either (i) multiple mnemonics - one for each CritIC

sequence, or (ii) having a new mnemonic with a passed

argument that indexes a structure to find the CritIC sequence.

In either case, the new macro-instruction has to know the exact

sequence of micro-instructions that it needs to execute. This

may be a reasonable option if the CritIC sequences are

somewhat limited, i.e., there are a few common sequences

which are widely prevalent across several apps as was the

case in solutions such as [42], [43], [53], [54]. However,

Fig. 5b shows that the number of unique CritIC sequences

(opcode+operands of all constituent instructions) is large - even

Fig. 7: Proposed Software Framework for our Methodology

each app can have 106 unique CritIC sequences - making

it impossible to extend the ISA for this purpose, or building

dedicated hardware for each unique CritIC sequence.
Exploiting ARM ISA: Instead, we need a mechanism

for dynamically creating/mimic-ing such macro instructions

based on the CritICs at hand, and we propose a novel

way of achieving this in the ARM ISA. Fig. 6(a) shows the

contemporary ARM ISA format [52] that uses 32 bits to

represent an instruction - containing 12 to 20 bits for opcodes,

12 bits for representing 2 source and 1 destination operand

registers. It also supports a concise format using 16-bits called

”Thumb extension” (Fig. 6(b)). In this mode, the opcode is

represented in 6 bits while the operands are represented in

3-4 bits each. The 16 bit format [52] is used in embedded

controllers for optimizing binary size. The existing ARM

decoders can decode any of these formats based on simple

flags and pending queue structures [51].

We propose to represent each instruction of a CritIC

sequence, that we would like to optimize, in the 16-bit format

(Fig. 6(d)). Even though past studies [51], [52], [55] report that

the 16-bit format produces ≈ 1.6× more instructions to execute

(and causes slowdown) because (i) it cannot have predicated

executions, and (ii) it cuts the number of architected registers

as operands from 16 to 11, we point out that the 16-bit format

is very amenable for CritIC instructions 1. We illustrate this

by plotting the CDF of coverage of the dynamic instruction

stream by the instructions in all identified CritIC sequences

of the original code (in 32 bit format) in Fig. 5b. In the

same figure, we also plot the CDF of coverage by the CritIC

instructions that can be represented in the 16-bit format without

any change, i.e., they have neither predications nor use more

than the allowed 11 registers. As we can see, there are very few

CritIC instructions that cannot be represented (4.5% of the

unique CritIC sequences), referred to as CritIC.Ideal

in Sec. IV-E, which demonstrates the promise of our proposal.

Additionally, the ARM Decoder has to be informed of the

instruction format, to switch back-and-forth between 32 and 16

bit representations. There are two possible ways to inform the

decoder of the format switch: (i) in the current ARM hardware,

this is done using explicit Branch instructions [52]. But, as we

will show in Sec. IV-A, this incurs additional overheads espe-

cially for relatively short (< 10) CritIC instruction sequences;

and (ii) our proposed alternative to extend an already existing

instruction mnemonic to support CritIC thumb format switch

in the decoder hardware (evaluated in Sec. IV-B).

C. Summarizing our Methodology

Fig. 7 summarizes the software framework for performing

and implementing the CritIC optimizations:

1If any instruction of a CritIC sequence cannot be represented in the
16-bit format as is, then the entire sequence is left as is (in the original format)
and is not optimized, i.e., all or nothing property (quantified in Fig. 5b).



• Trace Collection: We run the Android apps in QEMU [22]

emulator with Android OS, where all the hardware com-

ponents (CPU, GPU, touch, GPS, network, accelerometer,

gyro, display, speakers, etc.) are modeled. We instrument

its disassembler (with 1.6k lines of code or LOC) to output

the trace of instructions executed and data accessed by the

isolated process (app in consideration), for offline profiling.

• Identifying CritICs: This trace is used for detailed micro-

architectural simulation in Gem5 [23], with modifications

to identify critical instructions based on their fanouts across

ROB entries (3.3k LOC). To get CritICs from the critical

instructions, we implement additional tracking logic to dump

all the independently schedulable ICs (whose lengths vary

as discussed in Fig. 5) which results in 100s of GBs of ICs.

These are processed offline with a distributed hash-table

using Spark PairRDD [56] to sort and get the top CritICs (ICs

with average fanout threshold > 8) with the most coverage

(3.8k LOC). We fix 8 as the most beneficial average fanout

threshold and also observe that other values result in slight

performance degradations. The resulting CritICs is relatively

concise (≈10KB) to account for ≈30% of dynamic coverage.

• Compilation: Next, we modify the open-source ART com-

piler to add a final pass (CritIC instrumentation pass) that

applies CritIC optimizations on the apk binary (.oat genera-

tion). Note that, the ART compiler already comes with dif-

ferent optimization passes such as constant folding,

dead code elimination, etc., which work on DEX

intermediate representation, as well as load store

elimination, register allocation, etc., which

work on the destination ARM assembly code before binary

generation. Our CritIC pass works on ARM assembly code

(similar to instruction simplifier pass) to take

each CritIC (from the profile), checks whether each of its

instructions are convertible into a 16-bit Thumb format, and

if so, it lays down the entire CritIC sequence instructions

one after another in this 16-bit format with appropriate

two approaches explained next for switching the instruction

format (1.8k LOC). Note that, other than hoisting and Thumb-

converting the CritICs encountered, this pass does not affect

the existing instruction scheduling.

• Off the Shelf Apps: Our framework can be readily applied

to any off-the-shelf app (apk file) from the PlayStore [57].

Table II shows the ten mobile apps we use for evaluations.

These apps belong to a diverse set of domains ranging from

texting to gaming and video/audio streaming. These apps are

also top rated and have millions of downloads in PlayStore.

• Net Benefits: We have roughly doubled the instruction

fetch rate (halving F.StallForI) of the critical instruc-

tion sequences by switching formats, and reduced the

F.StallForR+D delays by making this self-contained de-

pendent chain contiguous in time. We will also demonstrate

that our proposed solution has very little hardware overhead

to interpret the format switch. In fact, our first approach

can be readily done on current hardware, albeit with some

inefficiencies as shown next. The second approach uses an

existing mnemonic to switch format, which is a very small

extension to the switch supported in existing ARM decoders.
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Fig. 9: Code Generation after CritICs have been identified. There are 2
CritICs, A and B, in this original instruction sequence.

IV. EVALUATIONS

A. Switching Approach 1: On Actual Hardware
We use the conventional approach present in ARM decoders

for switching between the two instruction formats, where two

unconditional branch instructions are added at the beginning

and end of each CritIC instruction sequence. The purpose

of these branch instructions is to inform the decoder of the

impending format switch and so both their target branch

addresses are statically encoded to point to the subsequent

instruction. As shown in Fig. 6, (i) the branch before the

CritIC sequence, is in 32 bit format (that sets the Thumb flag

at decode), and jumps to the first instruction of the CritIC;

(ii) the subsequent 5 CritIC instructions are decoded in 16 bit

Thumb format at the decoder; (iii) the branch after the CritIC

sequence is also in 16 bit format, with its target set to the next

instruction after the CritIC, that resets the format flag to 32-bit

at the decoder. Note that the costs of these branches would

mandate long CritIC sequences in order to amortize them.

We have implemented this on a Google Tablet hard-

ware having 4 ARM cores and 2 GB LPDDR3 memory.

��

��

���

���

���

���

��

�

�
��
��

��

�

&���!�����  !���!��!��
������ #������������

����
 �

!��
�����
��������3��

#������
.��!���
����

� 
����

�5��
��!�����
����3��

Fig. 8: Optimizing CritICs in existing hardware leaves
11% performance gap with the Ideal scenario.

Fig. 8 shows

the gains on

this hardware

from our CritIC

optimization

for all 10 apps.

Along with the

actual speedup

gains (of a

measly 3% on the average), we also show the lost potential

which we could have got if there were no branches before

and after the CritICs for the format switches. We are getting

only 1
5
th of the possible gains since the CritIC sequences are

not long enough (typically of length 5) to amortize the branch

overheads. Motivated by this, we next propose an alternative,

which does a very slight enhancement to the hardware, to

address this problem to win back those gains.

B. Switching Approach 2: Extending Existing ARM Instruction

To avoid the aforementioned overheads, we propose to use

an already existing instruction mnemonic, CDP (Co-processor



CPU 4 wide Fetch/Decode/Rename/ROB/Issue/Execute/Commit superscalar pipeline;

128 ROB entries, 4k Entry 2 level BPU [20], [59]

Memory2-way 32KB i-cache, 64KB d-cache, 2 cycle hit latency; 8-way 2MB L2 with

System CLPT prefetcher (1024×7bits entries) [18]; hit=10 cycles; 1 Ch;2 Ranks/Ch;

8 Banks per rank; open-page; Vdd = 1.2V; tCL,tRP,tRCD = 13, 13, 13 ns

TABLE I: Baseline Simulation configuration.

Domain App Activities Performed Domain

Acrobat View, add comment Document readers

Angrybirds 1 Level of game Physics games

Browser Search and load pages Web interfaces

Facebook RT-texting Instant messengers

Email Send,receive mail Email clients

Mobile Maps Search directions Navigation

Music 2 minutes song Music/audio players

Office Slide edit, present Interactive displays

PhotoGallery Browse Images Image browsing

Youtube HQ video stream Video streaming

SPEC.int bzip2, hmmer, libquantum, mcf, gcc, gobmk, sjeng, h264ref

SPEC.float sperand, namd, gromacs, calculix, lbm, milc, dealII, leslie3d

TABLE II: Popular Mobile and SPEC apps used in evaluation.

Data Processing call), and the 3-bit argument with it to denote

that the next l+1 instructions would be 16-bit format to inform

the decoder accordingly. Fig. 9 illustrates this translation by our

compiler pass for a CritIC sequence. In the first 32-bit word,

the first half contains the CDP command, together with the l

argument (Fig. 6(d)). The second half of this word contains

the first instruction of the CritIC sequence in 16-bit format.

The next �l/2� 32-bit words contain the next l instructions of

the CritIC sequence in 16-bit format. Upon encountering

the CDP command, the decoder puts the subsequent l +1 (1

coming in the latter half of the CDP word itself, and the other l

coming from the remaining �l/2� words) CritIC instructions

for 16-bit decoding. With the CDP argument having 3 bits, this

allows us to translate up to 1+23
= 9 CritIC instructions

into the 16-bit format using a single CDP command. Note that

we can also allow longer sequences by simply issuing more

CDP commands subsequently, though we find that CritIC

sequences up to 5 instructions suffice to provide the bulk of the

savings (detailed in Sec. IV-H). After the last 16-bit instruction

of this sequence passes through, the subsequent words get

switched to the 32-bit decoding format. We also implemented

and laid out the logic for the mode switch on CDP call on

Synopsys Design Compiler(H-2013.03-SP5-2) [58] with 45 nm

technology library and find that the extra logic only consumes

80μm2 area, dynamic and leakage power consumptions as

58μW and 414nW respectively. Although the timing for this

logic is only 160ps, we conservatively assume a 1 cycle extra

decoding stage delay when processing the CDP command.

Even though we have not cut the entire CritIC sequence

down to one instruction fetch as in the above “macro-

instruction” approach, our compiler-based ARM 16-bit trans-

lation roughly doubles the instruction fetch rate (halving

F.StallForI) compared to the original alternative. Further,

since these instructions are next to each other in the dynamic

stream, the dataflow gap is reduced, thereby helping in the

F.StallForR+D as well.

C. Simulation Results

We next describe the evaluation platform used for conducting

our experiments on different design scenarios and conduct an

in-depth evaluation of the proposed CritIC optimizations on

performance and energy consumption.

Hardware: We evaluate the app executions using the hardware

configuration of a Google Tablet in GEM5 [23]. As shown in

Table I, this hardware consists of 4 CPUs, each with a 4-issue

wide superscalar core, 32KB i-cache and a 64KB d-cache [60].

Further, we also simulate a detailed memory model for a 2GB

LPDDR3 using DRAMSim2 [61], [62]. This setup enables

us to execute apps in a cycle-level hardware simulation and

obtain performance and power consumption for CPU, caches,

and memory of the SoC.

App Execution: During the profiling phase (Sec. III-A2), these

apps are emulated for an average of five minutes and execute,

on average, around 100M instructions. This translates to ≈90

seconds of app execution time without the emulator overheads.

For our evaluations, we pick 100 samples at random, each

containing ≈500k contiguous instructions of app executions

tallying to a total of ≈50 million instructions (same parts for

all the optimizations evaluated).

D. Design Space

To quantify the performance effects of the proposed CritIC

design on mobile apps, we evaluate three design choices, and

compare them to the baseline configuration in Table I.

• Hoist: Since our solution employs two mechanisms - one

hoisting all instructions of a CritIC sequence and another

replacing them with 16-bit Thumb formats - we would

like to study their effectiveness individually. Towards this,

we implement a scheme which only does the former (i.e.,

identifies CritIC sequences, and hoists each sequences’

instructions), but leaves them in 32-bit ARM format. We

call this as Hoist in our evaluations.

• CritIC: This is our proposed CritIC design that aims to

tackle the fetch side bottlenecks for high-fanout instructions

as well as the F.StallForR+D bottlenecks by hoist-

ing/aggregating the constituent instructions together and

also translating these instructions to 16-bit Thumb format.

• CritIC.Ideal: As was noted earlier in Fig. 5b, we choose

to leverage only a subset of the total number of CritIC

sequences - (i) those that are at most length 5, and (ii) those

whose instructions can be translated directly to the 16-bit

Thumb format. In order to find out the lost opportunity, we

also evaluate a scheme called CritIC.Ideal which hypo-

thetically aggregates and Thumb-translates for all CritIC

instructions (i.e., the black CDF of Fig. 5b).

E. Performance Results

Fig. 10a plots the CPU execution speedup of each app for

the three scenarios discussed above to study the individual

as well as combined effects of the two components of CritIC

optimizations. We discuss app level speedups of each of these

optimizations normalized with respect to the baseline design.

When we consider the individual optimizations evaluated in

Fig. 10a, we see that the CritIC optimizations consistently

perform well in all apps with 9% (Music) to 15% (Acrobat)

speedup. However, Hoist (which only targets StallforRD) by

itself, only gives marginal improvements (average gain of 2.5%)

compared to CritIC which combines both F.StallForI and

F.StallForR+D optimizations, suggesting that just moving
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Fig. 10: (a)Speedup over baseline; (b) Fetch stage savings of CritIC instructions; (c) Energy gains with CritIC optimization

instructions does not suffice. Since this scheme only reduces

the dataflow gap across critical instructions, without boosting

the fetch efficiency, the impact of just a F.StallForR+D

optimization is not felt across these apps, reiterating the

need for fetch side improvements. Of the apps, Maps and

Youtube are more bottlenecked in the F.StallForR+D

(26.7% in Youtube in baseline of Fig. 10b) and this in turn

translates to the most benefits when it comes to optimizations

for F.StallForR+D (3.1%). All the other apps have even

less improvements from hoisting the CritIC instructions, with

Browser and Photogallery showing the least benefits of 1.7%.

CritIC, which implements both 16-bit conversions to boost

the fetch bandwidth, as well as the Hoist improvements, gives

12.6% speedup improvements on the average. In fact, we see

that the differences between CritIC and CritIC.Ideal,

to be quite small (e.g. only 1% gap in Acrobat, Browser and

Office). Limiting ourselves to CritIC lengths of 5 or to those

that can be directly translated to 16-bit Thumb format, does not

seem to hurt. This is because, a majority of CritIC instructions

are amenable to 16-bit Thumb representation, leaving <1%

room for any further improvement on the average. As discussed

in Sec. III, the volume of CritIC instructions representable

with the 16-bit format is within 5% of the entire CritIC

instruction volume. We note that the average 12.6% speedup

with CritIC significantly outperforms the previously proposed

single instruction criticality optimizations - load prefetching

and ALU prioritization - for which we showed speedups of

0.7% and 4.1% respectively.

F. System-Wide Energy Gains

The effect of our CritIC optimizations in terms of the

energy gains from various components of the mobile SoC is

plotted in Fig. 10c. Recall that CritIC optimizations decrease

the number of accesses to the i-cache by 40% (Fig. 6) for each

IC execution by representing 5 × 32-bit instructions as 3 ×
32-bit instructions. This translates to energy gains from i-cache

by 0.8% for the whole SoC. The CPU speedup discussed

above also results in additional energy gains for both CPU and

memory. On an average, CPU contributes to 2.2% of the energy

savings and the memory side of the execution contributes an

additional 1.5%. Overall, we observe 4.6% energy saving for the

whole system on the average, with the maximum energy savings

of 6.3% (in Photogallery). Specifically, the CPU execution

alone (excluding peripherals, ASIC accelerators, etc.) realizes

an average energy saving of 15%.

G.Comparing with Conventional Hardware Fetch Optimizations

One may note that numerous prior hardware enhancements

proposed to address the Fetch stage problems, including larger
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Fig. 11: Comparison with Hardware Mechanisms (a) Speedup and (b) Impact
on F.StallForIand F.StallForR+D.

and more intelligently managed i-caches [63]–[65], better

branch predictors [66]–[69], and/or instruction prefetchers [70]–

[74]. While adding sophisticated hardware for high end CPUs

may be acceptable, the resource constraints of mobile platforms

may not warrant such sophisticated hardware. Still, we have

implemented a number of hardware solutions for addressing

the Fetch bottleneck (described below), and compared them to

the speedup obtained with our software-only solution – CritIC:

• 2×FD: Since CritIC uses a 16-bit format to put 2 instructions

into each fetched word (selectively doubling fetch bandwidth

for critical instructions), we consider a hypothetical hardware

where the Fetch and Decode stage bandwidths are doubled

(for all instructions - not just critical ones), with no change to

other stages. In this scheme (2×FD), we simulate a hardware

with half the i-cache latency and double the resources

(hardware units/queues) in the fetch and decode stages.

• 4×i-cache: Though unreasonable, we compare with a

hardware that has 4× the i-cache capacity (128KB vs. 32KB)

to reduce instruction misses.

• EFetch [71]: We implemented a recently proposed instruc-

tion prefetcher [71] that is specifically useful for user-event

driven applications, as in our mobile apps. This prefetcher

[71] tracks history of user-event call stack, and uses it to

predict the next functions and prefetch its instructions. It

needs a 39KB lookup table for maintaining the call stacks.

• PerfectBr: This is a hypothetical system where we assume

there is no branch misprediction in the entire execution.

Since CritIC addresses both (i) F.StallForI which the

above 3 address; and (ii) F.StallForR+D, which is some-

what addressed by prior criticality optimizations such as [5],

[6], [14], [16], [25], [31], [75]–[77], which prioritize the back-

end resources for those instructions, we additionally consider

the following configurations:

• BackendPrio [33]: This platform implements the prioritiza-

tion hardware for the back-end resources proposed in [33],

using the tracking hardware proposed in [32], which requires

1.5KB SRAM for maintaining the tokens.

• AllHW: This consists of hardwares for both front and
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Fig. 12: Sensitivity Analysis: (a) Fetch savings and speedup w.r.t CritIC length;
and (b) Speedup w.r.t CritIC Profile Coverage.

backends, i.e., 4×i-cache+EFetch+PerfectBr+BackendPrio.

• With CritIC: In addition to comparing with vanilla CritIC,

which has no additional hardware needs, we also study CritIC

in combinations with every above hardware mechanisms.

Results: We observe in Fig. 11a that previously proposed

hardware mechanisms yield ≈4% to 12% speedup. However,

it is important to optimize for both F.StallForI and

F.StallForR+D. These hardware mechanisms only benefit

one of these two stalls (Fig. 11b). For example, 2×FD, 4×
larger i-cache and EFetch lower miss penalties to reduce

the F.StallForI by ≈7%, while PerfectBr completely

eliminates branch penalties to reduce fetch stalls by 12%. These

mechanisms have no effect on F.StallForR+D. Similarly,

BackendPrio only addresses the F.StallForR+D problem,

reducing it by 3% and does not tackle the F.StallForI.

While one could throw all this hardware to tackle both

these stalls, as in AllHW, to get the overall speedup benefits

of 23.2%, such extensive hardware may be unacceptable for

a mobile platform. CritIC, by itself, which does need any

additional hardware, does significantly better than each of these

individual hardware mechanisms. If future mobile platforms

are to incorporate one or more of these F.StallForI and

F.StallForR+D hardware mechanisms, our results in Fig.

11a show that CritIC can synergistically boost the benefits

further. In fact, even with a system that incorporates all of the

above hardware (AllHW) which gives a speedup of 23.2%, can

be boosted to give a speedup of 31% with CritIC on top.

H. Sensitivity to CritIC length

The speedup and energy gains reported above are for a small

CritIC size of 5 instructions. We next investigate the impact

of CritIC length on application performance.

Even though CritIC.Ideal showed not much difference

compared to the realistic CritIC (which uses lengths of up

to 5 instructions), it is interesting to see which CritIC length

gives the most rewards individually, i.e., not just all CritICs up

to length n, but for each individual n. Note that as n increases,

we are saving more on the fetch costs - both F.StallForI

and F.StallForR+D latencies. However, the probability of

finding a CritIC of exactly length n, where all its n instructions

can be directly translated to the 16-bit Thumb format, decreases

as n increases. To study these trade-offs, in Fig. 12a we study

the impact of a given n (x-axis) on the fetch cost savings

(right y-axis) and the consequent speedup (left y-axis). As

expected, fetch costs keep dropping with larger n, though

with diminishing returns. The speedup increases up to a point

(n = 5), beyond which it starts dropping since the probability

of finding such sequences diminishes. In fact, we observe a

drop in coverage of CritICs executed from 16% to 15% as we

move for a longer CritIC.

I. Sensitivity to Profiling

Since our technique uses offline profiling to identify and

modify critical chains, we also study the sensitivity of results to

the extent of profiling, i.e. the percentage of the app execution

that is profiled. Fig. 12b shows the speedup (y-axis) as a

function of the percentage of the execution that is profiled

(x-axis), averaged across all apps. The results presented so far

use profiling that covers 72% of the execution. While a lower

coverage does reduce the speedup obtained, we see that even

when only a third of the execution is profiled and transformed

into CritIC thumb sequences, we still get 10% speedup across

these apps. If we further the profiling, and transform the entire

application, we can get up to 15% speedup on the average.

V. WHY EVEN BOTHER WITH CRITICALITY?

While we have proposed the use of Thumb 16-bit format to

nearly double the fetch bandwidth of the CritIC instructions,

one may use this approach opportunistically for all instructions

amenable to such modification in the instruction stream. If so,

one could question why we bothered to identify CritICs in

the first place. To justify the need, in Fig. 13a, we plot the

speedup obtained with the following schemes:

• OPP16: In this approach, we opportunistically convert any

amenable sequence of consecutive dynamic instructions

(sequence has to be of at least length 3) to the 16-bit

Thumb format, regardless of whether they are critical or not.

Note that if there is an instruction which is not amenable

to such format conversion between two other instructions

which are amenable, OPP16 will NOT move the instructions

around for the conversion. Also, as explained earlier, if

the dynamic sequence exceeds 9 contiguous instructions

that can be converted, we use another CDP instruction to

accommodate longer sequences for such conversion.

• Compress: This is a state-of-the-art thumb compression

technique, implementing the Fine-Grained Thumb Conver-

sion heuristic from [78], that first converts a whole function

to Thumb, then replaces frequently occurring “slower thumb

instructions” back to 32 bit ARM instructions.

• CritIC: This implements our CritIC mechanism described

earlier, moving/hoisting identified CritIC sequence instruc-

tions and converting them to 16-bit format as long as they

are amenable to such conversion and they are of length ≤ 5.

• OPP16+CritIC: We combine CritIC (for CritIC se-

quence instructions) and OPP16 (for others) in this approach.

As seen, just opportunistically leveraging the 16-bit Thumb

format (in OPP16) only provides 6% benefit on the average
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Fig. 13: Opportunistically transforming to 16-bit Thumb format. (a) Speedup
and (b) Percentage of Dynamic Instructions converted to 16-bit format.



over the baseline. Even smartly employing the Thumb format

(Compress), as in [78], only yields a 8% speedup. Since both

OPP16 and Compress are agnostic to critical instruction chains,

they can only save on fetch costs (F.StallForI) whenever

possible without hoisting the dependent instructions in the

chain. Hence, both these techniques provide less than 40%

of the benefits provided by our CritIC optimization, even

though as shown in Fig. 13b, CritIC converts around 37%

and 50% fewer instructions in the dynamic stream to the 16-bit

format compared to OPP16 and Compress respectively. This

clearly points out the need to identify the critical instruction

sequences for such optimization, instead of blindly doing this

for all instructions. In fact, nothing precludes adding on the

optimization for other instructions on top of CritIC, as is

shown for OPP16+CritIC schemes, furthering the speedup by

25% over doing CritIC alone.

VI. RELATED WORK

Criticality: Instruction criticality has been shown to be an

important criterion in selectively optimizing the instruction

stream. Prior work has revolved around both (i) identifying

critical instructions [4], [9], [12], [24]–[26] using metrics such

as fanout, tautness, execution latencies, slack, and execution

graph representations, as well as (ii) optimizing for those

identified using techniques such as critical load optimizations

[9], [11], [12], [18], [79] or even backend optimizations

for critical instructions such as [5], [6], [14], [16], [24],

[25], [31], [75]–[77]. While one can potentially employ these

optimizations for mobile apps, as we showed (in Fig. 1b),

mobile apps have close data-dependent, clustered occurrences

of critical instructions, requiring their ensemble optimization

rather than their consideration individually.

Optimizing Instruction Chains/Ensembles: There are prior

works, specifically for high-end processors, in identifying

and extracting dependence chains [80]–[82]. However, such

techniques require fairly extensive hardware to identify these

chains, and optimizing for them, e.g. techniques such as [18],

[76], [77] require 16KB SRAM, and [79] incurs 22% additional

power, making them less suitable for resource-constrained

mobile SoCs. In contrast, our solution is an entirely software

approach for identifying dependence chains, and a software

approach in optimizing for them by intelligently employing the

ARM 16-bit thumb compression [19]–[21], [51] mechanism.

Front-end Optimizations for Mobile Platforms: There has

been significant recent interest to optimize mobile CPU

execution [83]–[89]. Some of these optimizations target specific

domains (e.g. web-browsers [90]–[93]), while others address

overall efficiency [37], [94]–[96]. Unlike our approach, many

of these optimizations either provision more CPU hardware

[90], [95], [96], or optimize for only specific app domains [90]–

[92]. This paper is amongst the first to show that mobile apps

are bottlenecked in the Fetch stage of the pipeline, suggesting

that there can be considerable rewards in targeting this stage.

Fetch stage bottlenecks have been extensively addressed in high

end processors through numerous techniques - smart i-cache

management (e.g. [63]–[65], [97]–[99]) prefetching (e.g. [70]–

[74]), branch prediction (e.g [66]–[69]), instruction compression

[100] SIMD [38], [39], VLIW [40], vector processing [41],

etc. However, many of these require extensive hardware that

mobile platforms may not be conducive for. As we showed,

our software solution employs a simple trick of hoisting and

Thumb conversion on critical instructions to extract the same

performance that many of these high-end hardware mechanisms

provide. Further, as mobile processors evolve to incorporate

more hardware for optimizing the fetch stage, as shown, our

CritIC software approach can synergistically integrate with

them to significantly boost the improvements. While similar

in spirit to some of the prior work on instruction stream

compression [101]–[103], we quantitatively showed the need to

identify critical chains and hoisting the instructions selectively

before doing the compression.

Software Profiling for Mobile Platforms: A number of

software profiling frameworks have been proposed [35], [104]–

[107] - studying library usage [35], [106], app-market level

changes to the source/advertisement models, [104], [105],

dynamic instrumentation mechanisms [107], developer side

debugging/optimizations [108], [109] etc. Some of these tools

can also be extended for the profiling and compilation phases

described in this work. We have built on top of the AOSP

emulation [22], [49] and Gem5 hardware simulator [23] for

profiling, and ART compiler for code transformation.

VII. CONCLUSION

This paper targets to enhance the performance a growing

class of applications - mobile apps – that are more prevalent and

user driven than traditional server/scientific workloads. In this

context, we show that mobile apps have unique characteristics

such as high volume of critical instructions occurring as short

sequences of dependent instructions that makes them less attrac-

tive for exploiting well-known criticality-based optimization

techniques. We instead introduce the concept of CritICs as a

granularity for tracking and exploiting criticality in these apps.

We present a novel profiler-driven approach to identify these

CritICs, and hoist and aggregate them by exploiting existing

ARM ISA’s Thumb instruction format in a compiler pass to

boost the front-end fetch bandwidth. The end-to-end design

starting from application profiling, identification of CritICs,

hoisting those instructions and transformation them to the 16-

bit Thumb format has been evaluated for a Google Tablet using

the GEM5 simulator to estimate the performance and energy

benefits. Evaluations with ten popular mobile apps indicate that

the proposed solution results in an average 12.6% speedup and

4.6% reduction in system-wide energy consumption compared

to the baseline design, requiring little to no hardware support.

The proposed technique can also be synergistically integrated

with other optimizations such as hardware prefetching, or even

opportunistically converting as many instructions as possible

to the Thumb format, to further the benefits.
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